Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosseinalipour, M.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Effects of bioglass nanoparticles on bioactivity and mechanical property of poly(3-hydroxybutirate) scaffoldscitations

Places of action

Chart of shared publication
Hajiali, Hadi
1 / 1 shared
Karbasi, S.
1 / 1 shared
Rezaie, H. R.
1 / 2 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Hajiali, Hadi
  • Karbasi, S.
  • Rezaie, H. R.
OrganizationsLocationPeople

article

Effects of bioglass nanoparticles on bioactivity and mechanical property of poly(3-hydroxybutirate) scaffolds

  • Hajiali, Hadi
  • Karbasi, S.
  • Hosseinalipour, M.
  • Rezaie, H. R.
Abstract

<p>The development of composite scaffold materials in bone tissue engineering is gaining appeal, as the beneficial properties of two or more types of material can be compounded together to better respond to the mechanical and physiological demands of the host tissue. In this study, poly (3-hydroxybutyrate) was reinforced with a different weight ratio of nanobioglass (0, 2.5, 5, 7.5 and 10 wt%). The nanocomposite scaffolds were successfully prepared by the salt leaching process with various volume fractions of porosities (70, 80 and 90 wt% of NaCl). The results of our studies showed a favorable interaction between polymer and bioglass nanoparticles, which improved interfaces and mechanical properties, especially in samples which were prepared with 70 wt% NaCl. The Young's modulus of samples ranged from 7.23 MPa to 48.27 MPa, which were in the range of the Young's modulus of cancellous bone. The analysis results of samples which were immersed in SBF showed that hydroxyapatite formed on the nanocomposite scaffold surfaces, and they exhibited high bioactivity compared to the pure PHB scaffolds. In this study, nanobioglass, as a reinforcement phase with low mass fraction, is shown to be more effective than micro-materials with high mass fraction.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • leaching
  • mechanical property
  • bioactivity