People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Den Beld, Wesley Theodorus Eduardus
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Oxidation of thin film binary entropy alloys
- 2022Relation between composition and fracture strength in off-stoichiometric metal silicide free-standing membranescitations
- 2022Fracture Toughness of Free-Standing ZrSiₓ Thin Films Measured Using Crack-on-a-Chip Methodcitations
- 2021Strengthening ultrathin Si3N4 membranes by compressive surface stresscitations
- 2021Hydrogen etch resistance of aluminium oxide passivated graphitic layerscitations
- 2019Atomic H diffusion and C etching in multilayer graphene monitored using a y based optical sensorcitations
Places of action
Organizations | Location | People |
---|
document
Oxidation of thin film binary entropy alloys
Abstract
In recent years, material science has put significant effort into understanding the behavior of multiple principle element alloys (MPEAs), notably the category high entropy alloys (HEAs). Most of these studies have been conducted on the micro to macro scales, yet the nanoscale remains relatively unexplored. Additionally, investigating the structural changes caused by amorphous oxidation for thin film MPEAs is particularly new, with no fundamental theory having been found. By studying ambient oxidation of thin film binary entropy alloys, we show how the Hume-Rothery rules affect the oxide formation and in particular the requirement of an increased temperature prior to the formation of polycrystalline oxides for these systems, compared to their single metal counterparts.