People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borba, Márcia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024A Comprehensive Review of the Multifaceted Characterisation Approaches of Dental Ceramics
- 2024Influence of Different Surface Finishing Protocols on the Wear Behavior of Lithium Disilicate Glass-Ceramics
- 2023Influence of piston material on the fatigue behavior of a glass-ceramiccitations
- 2023Fatigue resistance of polymeric restorative materials: effect of supporting substrate
- 2023Optimization of Lithium Disilicate Glass-Ceramic Crowns: Finish Line, Scanning, and Processing Methodscitations
- 2020Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentincitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Effect of supporting substrate on the failure behavior of a polymer-infiltrated ceramic network materialcitations
- 2019Fatigue Behavior of Crystalline-Reinforced Glass-Ceramicscitations
- 2018Effect of screw-access hole and mechanical cycling on fracture load of 3-unit implant-supported fixed dental prosthesescitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018Precision of different fatigue methods for predicting glass-ceramic failurecitations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2018How does the piston material affect the in vitro mechanical behavior of dental ceramics?citations
- 2017Influence of surface finishing on fracture load and failure mode of glass ceramic crownscitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2016Effect of different aging methods on the mechanical behavior of multi-layered ceramic structurescitations
- 2014Effect of the infrastructure material on the failure behavior of prosthetic crownscitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
- 2011Flexural strength and failure modes of layered ceramic structurescitations
Places of action
Organizations | Location | People |
---|
article
Fatigue resistance of polymeric restorative materials: effect of supporting substrate
Abstract
The objective of this study was to investigate the effect of mismatch between the elastic properties of substrate and restorative material on the fatigue resistance and stress distribution of multilayer structures. The tested hypotheses were that (1) both an indirect composite resin (IR) and a polymer-infiltrated ceramic network (PICN) would show a higher survival rate after cyclic loading when cemented to a substrate with a high elastic modulus (E); and (2) PICN structures would have higher survival rates than IR structures regardless of the supporting substrate. Blocks of PICN and IR were cut to obtain 1.0-mm-thick sections, which were cemented to substrates with different E values: c, core resin cement (low E); r, composite resin (intermediate E); and m, metal (nickel-chromium alloy; high E). The resulting 6 groups of specimens (n = 20 per group) were subjected to a cyclic fatigue test (106 cycles). Stress distribution was verified using finite element analysis, and the risk of failure was estimated. Fatigue data were analyzed using Kaplan-Meier and Holm-Šidák tests. The χ2 test was used to evaluate the type of crack. The groups IRc, IRr, and PICNm had the highest survival rates after cyclic loading and were statistically similar to each other. Their survival rates were significantly greater than those of the IRm, PICNr, and PICNc groups (P < 0.001), which were all significantly different from each other (P < 0.001). There was a significant relationship between the experimental group and type of crack (P < 0.001). Specimens cemented to core resin cement and composite resin substrates showed predominantly radial cracks, while those cemented to nickel chromium alloy had predominantly cone cracks. The risk of failure values revealed that PICN was more sensitive to the type of substrate than IR. PICN has greater fatigue-resistant behavior when cemented to a substrate with a high E value, while IR has superior performance when substrates with lower and intermediate E values are used.