People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morard, Guillaume
Institute of Mineralogy, Materials Physics and Cosmochemistry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2023Composition-dependent thermal equation of state of B2Fe-Si alloys at high pressurecitations
- 2023Denser glasses relax faster: Enhanced atomic mobility and anomalous particle displacement under in-situ high pressure compression of metallic glassescitations
- 2023MHz free electron laser x-ray diffraction and modeling of pulsed laser heated diamond anvil cellcitations
- 2023Local Structure and Density of Liquid Fe‐C‐S Alloys at Moon's Core Conditionscitations
- 2022Density determination of liquid iron-nickel-sulfur at high pressurecitations
- 2022Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressurecitations
- 2022Stratification in planetary cores by liquid immiscibility in Fe-S-Hcitations
- 2021Spin State of Iron in Dynamically Compressed Olivine Melt
- 2020In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressurescitations
- 2020Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperaturecitations
- 2020TiC-MgO composite: an X-ray transparent and machinable heating element in a multi-anvil high pressure apparatuscitations
- 2020Eutectic melting of Fe-3 at% Si-4 at% C up to 200 GPa and implications for the Earth's corecitations
- 2018Solving Controversies on the Iron Phase Diagram Under High Pressurecitations
- 2018Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPacitations
- 2018Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPacitations
- 2017Crystallization of silicon dioxide and compositional evolution of the Earth's corecitations
- 2016Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPacitations
- 2016Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurementscitations
- 2016The phase diagram of NiSi under the conditions of small planetary interiorscitations
- 2015Melting of MORB at core–mantle boundarycitations
- 2014A long-lived lunar dynamo powered by core crystallizationcitations
- 2014Density measurements and structural properties of liquid and amorphous metals under high pressurecitations
- 2014The melting curve of Ni to 1 Mbarcitations
- 2013Mechanism and kinetics of the a-b transition in San Carlos olivine Mg1.8Fe0.2SiO4citations
- 2013Mechanism and kinetics of the a-b transition in San Carlos olivine Mg1.8Fe0.2SiO4citations
- 2013High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: implications for multi-phase rheology of the lower mantlecitations
- 2013Density measurements and structural properties of liquid and amorphous metals under high pressure studied by in situ X-ray scattering".
- 2013Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffractioncitations
- 2011In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: A new technique for studying mechanical behavior of multiphase compositescitations
- 2011In situ high-pressure and high-temperature X-ray microtomographic imaging during large deformation: A new technique for studying mechanical behavior of multiphase compositescitations
- 2010Composition of the Earth's inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloyscitations
- 2010Composition of the Earth's inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloyscitations
- 2009Microstructural investigation of melting in laser-shocked recovered iron foils
- 2008In situ structural investigation of Fe-S-Si immiscible liquid system and evolution of Fe-S bond properties with pressurecitations
- 2008In situ determination of Fe-Fe3S phase diagram and liquid structural properties up to 65 GPacitations
- 2007Structure of eutectic Fe–FeS melts to pressures up to 17 GPa: Implications for planetary corescitations
Places of action
Organizations | Location | People |
---|
document
Spin State of Iron in Dynamically Compressed Olivine Melt
Abstract
The density contrast between silicate melts and solids is essential for understanding early differentiation of rocky planets and the origin of the present-day low-velocity structures in the Earths deep interior. Studies have found that the electronic spin state of Fe impacts the density of silicates by altering their volume and solid/liquid Fe partitioning at the pressure-temperature conditions expected for the Earths deep mantle. Previous static compression studies indicate that high-spin Fe is dominant up to the pressures of the Earths core-mantle boundary in the most abundant lower-mantle phase, bridgmanite. However, the spin behavior of Fe in molten silicates is poorly known at deep mantle conditions due to experimental challenges. We have conducted simultaneous measurements of X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) on dynamically compressed olivine melt at the Matter in Extreme Conditions (MEC) beamline of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory. XRD data showed that the local structure of the molten olivine is similar to those found in silicate glasses. XES spectra show low-spin Fe in olivine melt at pressures between 140 and 280 GPa at temperatures over 4000 K. The dominant low-spin state of Fe in the melt is in sharp contrast with the reported spin state of Fe in compressed silicate glasses under cold static compression where a significant fraction of Fe remains high spin even at the pressures relevant for the Earths core-mantle boundary. The contrasting spin behavior suggests the importance of thermal relaxation of local structures in melt for the stability of low-spin Fe at high pressures. The dominant low-spin Fe in olivine melt supports the strong partitioning of Fe into the melt and higher silicate melt densities. This would result in negatively buoyant silicate melts in the deep interior of the crystallizing early magma ocean and the observed low-velocity structures found near the present-day Earths core-mantle boundary....