People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gneiger, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Dark field imaging of the in vitro corrosion of biodegradable magnesium screws
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Investigations on the Forging Behavior of Mg–Ca–Al Alloys
- 2024Manufacturing and processing of sheets using a Mg–Al–Ca–Zn–Y alloy for automotive applicationscitations
- 2023Ultrasonic atomization of magnesium alloy AZ61 based on the TIG melting method
- 2023Applicability of a deformation dilatometer for short time creep experiments of magnesium alloyscitations
- 2023Investigations on forging of low-density Mg-Li alloys
- 2023Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grainscitations
- 2023Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Sicitations
- 2023Processing of AZ91D Magnesium Alloy by Laser Powder Bed Fusioncitations
- 2022Investigations on a ternary Mg-Ca-Si wrought alloy extruded at moderate temperaturescitations
- 2022Active inserts, a plug and play solution for increasing mechanical properties and reducing porosity in LPDC-ed parts - Aktive Einsätze, eine Plug-and-Play-Lösung zur Verbesserung der mechanischen Eigenschaften und Verringerung der Porosität in LPDC-gefertigten Teilen
- 2020Mg-alloys for forging applications-A reviewcitations
Places of action
Organizations | Location | People |
---|
article
Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
Abstract
Magnesium alloys play an essential role in metallic lightweight construction for modern mobility applications due to their low density, excellent specific strength, and very good castability. For some years now, degradable implants have also been made from magnesium alloys, which, thanks to this special functionality, save patients a second surgery for explantation. New additive manufacturing processes, which are divided into powder-based and wire-based processes depending on the feedstock used, can be utilized for these applications. Therefore, magnesium alloys should also be used here, but this is hardly ever implemented, and few literature reports exist on this subject. This is attributable to the high affinity of magnesium to oxygen, which makes the use of powders difficult. Therefore, magnesium wires are likely to be used. In this paper, a magnesium-based nanocomposite wire is made from an AM60 (Mg-6Al-0.4Mn) (reinforced with 1 wt% AlN nanoparticles and containing calcium to reduce flammability), using a high-shear process and then extruded into wires. These wires are then used as feedstock to build up samples by wire-arc directed energy deposition, and their mechanical properties and microstructure are examined. Our results show that although the ductility is reduced by adding calcium and nanoparticles, the yield strength in the welding direction and perpendicular to it is increased to 131 MPa.