People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jinschek, Joerg R.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Effect of electron dose rate on the total dose tolerance limit in ZIF 8 metal organic framework (MOF)
- 2023Microstructural Evolution of One and Two step Heat Treatments on Electron Beam Powder Bed Fusion Fabricated Haynes 282
- 2023Microstructural Heterogeneities in Electron Beam Additively Manufactured Haynes 282
- 2023Observations of ‘far from equilibrium’ phenomena under in reactor thermal conditions using in situ TEM
- 2023In situ TEM observations of thermally activated phenomena under additive manufacturing process conditions
- 2023Strengthening of Pre-treated Aluminum During Ultrasonic Additive Manufacturing
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023In-situ S/TEM Visualization of Metal-to-Metal Hydride Phase Transformation of Magnesium Thin Films
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282
- 2022Preface to the special issuecitations
- 2022Strengthening of pretreated aluminum during ultrasonic additive manufacturingcitations
- 2009The Titan Environmental Transmission Electron Microscopecitations
Places of action
Organizations | Location | People |
---|
document
In situ TEM observations of thermally activated phenomena under additive manufacturing process conditions
Abstract
Engineering components, fabricated via fusion based additive manufacturing (AM) processes, experience varying spatio-temporal thermal transients in the build process due to the localized high energy delivered by the heat source. The combination of extreme thermal gradients (10<sup>4</sup> - 10<sup>6</sup> K/m) and/or rapid thermal cycling (10<sup>2</sup>- 105 K/s) may result in metastable and directional microstructures that significantly affect part performance. In order to tailor the microstructure of AM builds to obtain desired properties in ‘as fabricated’ AM builds, it is necessary to understand the solid-state dynamic processes that govern the microstructural evolution under such extreme thermal conditions. Currently, this information can only be obtained through post-mortem characterization, e.g. by electron microscopy. Here, we performed in-situ electron microscopy studies using a modified heating device to simulate thermal AM conditions to observe the solid-state dynamic processes during phase transformations in Ti-6Al-4V and Haynes 282