Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Godard, Marie

  • Google
  • 10
  • 22
  • 162

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022The 3.4 µm absorption band profile : comparison of aliphatic interstellar dust observations and laboratory analogues propertiescitations
  • 2017Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays18citations
  • 2016Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infrared36citations
  • 2014Hydrogenated amorphous carbons : evolution of interstellar carbon dustcitations
  • 2012Effects of cosmic rays on hydrocarbon interstellar dust1citations
  • 2011Hydrogenated amorphous carbons: observations, synthesis and characterisation in laboratory of interstellar dustcitations
  • 2011Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band76citations
  • 2011The influence of cosmic rays on the 3.4 microns interstellar absorption bandcitations
  • 2010Photoluminescence of hydrogenated amorphous carbons: Wavelength-dependent yield and implications for the extended red emission31citations
  • 2009Hydrogenated amorphous carbons photoluminescence and astrophysical implications for the extended red emissioncitations

Places of action

Chart of shared publication
Dartois, Emmanuel
3 / 9 shared
Béroff, K.
1 / 3 shared
Chabot, M.
4 / 7 shared
Trautmann, C.
1 / 32 shared
Bender, M.
1 / 5 shared
Pino, T.
4 / 7 shared
Dartois, E.
5 / 15 shared
Severin, D.
1 / 8 shared
Ysard, N.
1 / 14 shared
Köhler, M.
1 / 10 shared
Gavilan, L.
1 / 4 shared
Jones, A. P.
1 / 12 shared
Duprat, J.
3 / 7 shared
Dhendecourt, L.
3 / 9 shared
Carpentier, Y.
2 / 3 shared
Brunetto, R.
3 / 11 shared
Engrand, C.
3 / 6 shared
Bréchignac, P.
2 / 3 shared
Féraud, G.
2 / 3 shared
Carpentier, Yvain
1 / 5 shared
Feraud, G.
1 / 1 shared
Brechignac, P.
1 / 1 shared
Chart of publication period
2022
2017
2016
2014
2012
2011
2010
2009

Co-Authors (by relevance)

  • Dartois, Emmanuel
  • Béroff, K.
  • Chabot, M.
  • Trautmann, C.
  • Bender, M.
  • Pino, T.
  • Dartois, E.
  • Severin, D.
  • Ysard, N.
  • Köhler, M.
  • Gavilan, L.
  • Jones, A. P.
  • Duprat, J.
  • Dhendecourt, L.
  • Carpentier, Y.
  • Brunetto, R.
  • Engrand, C.
  • Bréchignac, P.
  • Féraud, G.
  • Carpentier, Yvain
  • Feraud, G.
  • Brechignac, P.
OrganizationsLocationPeople

document

The influence of cosmic rays on the 3.4 microns interstellar absorption band

  • Godard, Marie
  • Duprat, J.
  • Carpentier, Yvain
  • Dhendecourt, L.
  • Feraud, G.
  • Chabot, M.
  • Brunetto, R.
  • Pino, T.
  • Engrand, C.
  • Brechignac, P.
  • Dartois, E.
Abstract

IAU Symposium 280, Poster 37, Session 3. ; International audience ; A 3.4 μm absorption band, assigned to aliphatic C-H stretching modes of hydrogenated amorphous carbons (a-C:H), is widely observed in diffuse interstellar medium (ISM), but the only absorption occurring in this wavelength range in dense clouds is a large featureless band at 3.47 μm whose origin and attribution is still debated. Cosmic ray bombardment is one of the interstellar processes destroying the 3.4 μm feature. With the present work, we aim at carefully experimentally investigating the effects of such cosmic rays on the interstellar 3.4 μm absorption band carriers. Samples of carbonaceous interstellar analogs (a-C:H and soot) have been irradiated by swift ions in the MeV range, and monitored by infrared spectroscopy. These ion irradiations result in an effective dehydrogenation and chemical bonding modification of the samples, seen in particular through the decreasing absorbance of the 3.4 μm feature with the fluence (cf. figure). These experimental results allow a proper destruction cross-section determination over a large range of energies. Combined to an ISM cosmic ray distribution, we discuss the implications in different astrophysical environments.

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • infrared spectroscopy