People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lasgorceix, Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 20233D technology and antibacterial post-treatments: the process for the future manufacturing of bone substitutes?
- 2023Mg2+, Sr2+, Ag+, and Cu2+ co‐doped β‐tricalcium phosphate: Improved thermal stability and mechanical and biological propertiescitations
- 2023Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applicationscitations
- 2023Synthesis and Direct Ink Writing of doped β-tricalcium phosphate bioceramics for bone repair applications
- 2023Shaping of complex ceramic parts by several additive manufacturing processes
- 2023Surface structuring of β-TCP and transition to α-TCP induced by femtosecond laser processingcitations
- 2023Macroporous biphasic calcium phosphate materials for bone substitute applications
- 2023Cold Sintering Process for developing hydroxyapatite ceramic and polymer composite
- 2023Cold Sintering Process for developing hydroxyapatite ceramic and polymer composite
- 20233D printing of doped β-tricalcium phosphate bioceramics using robocasting
- 2023Combination of indirect stereolithography and gel casting methods to shape ceramic dental crowns
- 2022Binder jetting process with ceramic powders ; Binder jetting process with ceramic powders: Influence of powder properties and printing parameterscitations
- 2022Shaping of complex ceramic parts using stereolithography and gel casting
- 2022Manufacturing methods of bioceramic scaffolds
- 2022Shaping of ceramics by hybrid binder jetting
- 2022Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applicationscitations
- 2022Young Ceramists in the Spotlight
- 2022Shaping of ceramic by binder jetting
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Post-infiltration to improve the density of binder jetting ceramic partscitations
- 2021Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2021Influence of dopants on thermal stability and densification of β-tricalcium phosphate powderscitations
- 2021Development of calcium phosphate suspensions suitable for the stereolithography processcitations
- 2021Hybrid additive/subtractive manufacturing system to prepare dense and complicated ceramic parts
- 2020Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2020Hybrid additive/subtractive manufacturing system to prepare dense and complex shape ceramic parts
- 2019Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore designcitations
- 2019Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessmentcitations
- 2016Shaping by microstereolithography and sintering of macro–micro-porous silicon substituted hydroxyapatitecitations
- 2016Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) modelcitations
- 2014Shaping by microstereolithography and sintering of macro-micro-porous silicated hydroxyapatite ceramics and biological evaluation
Places of action
Organizations | Location | People |
---|
conferencepaper
Hybrid additive/subtractive manufacturing system to prepare dense and complex shape ceramic parts
Abstract
International audience ; As the conventional binder jetting method is limited in terms of achievable density and finish surface, a new concept of hybrid subtractive/additive manufacturing system has been recently developed. The system relies on a modified binder jetting machine which integrates a slurry-based deposition system and a pulsed laser. The slurry-based deposition system is a spray device which can be an alternative to the recoating blade traditionally used to spread layers of coarse powder. By using slurry containing fine ceramic grains, thin layers of highly packed powder can be obtained which is highly beneficial to improve the sintered density of printed parts. The other limitation of binder jetting is the rough finish surface. Thanks to the smallness of the spot size, a pulsed laser is a good option to refine the contour of each printed layers thus enhancing the overall part resolution and smoothness.The present work exhibits some preliminary results obtained using this new concept of hybrid machine. Parts made in alumina have been produced demonstrating the advantages and current limitations of the new approach. Alumina powders have been processed to change the particle size, distribution and morphology in order to assess the influence of these characteristics on printing behavior. Furthermore, process parameters were studied such as layer thickness, deposited amounts of binder on each layer, spreading speed of recoater. This work also reports the results of the first tests using the laser to refine the borders of each printed layer. The influence of this treatment on the finished surface of the sintered parts is highlighted.