People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thuault, Anthony
Laboratoire de Mécanique et Procédés de Fabrication
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Microwave-assisted debinding of Al2O3 parts printed by stereolithographycitations
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2022Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
- 2021Effect of build orientation on the manufacturing process and the properties of stereolithographic dental ceramics for crown frameworkscitations
- 2021Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2021Influence of dopants on thermal stability and densification of β-tricalcium phosphate powderscitations
- 2021Mechanical modelling of microwave sintering and experimental validation on an alumina powdercitations
- 2020Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentationcitations
- 2020Mechanical properties of thermally sprayed porous alumina coating by Vickers and Knoop indentationcitations
- 2020Coupling additive manufacturing and microwave sintering: A fast processing route of alumina ceramicscitations
- 2020Fabrication of higher thermal stability doped β-tricalcium phosphate bioceramics by robocasting
- 2020Influence of microwave sintering on electrical properties of BCTZ lead free piezoelectric ceramicscitations
- 2020Experimental study and thermal mechanical modelling for alumina
- 2019Tribological behavior of composites fabricated by reactive SPS sintering in Ti‐Si‐C systemcitations
- 2018Unconventional Sintering of a Commercial Cemented WC-6Co Hardmetal
- 2017Comparison of conventional Knoop and Vickers hardness of ceramic materialscitations
- 2017Stereolithography ; Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturingcitations
- 2017Mechanical characterization of brittle materials using instrumented indentation with Knoop indentercitations
- 2015Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperaturecitations
- 2015Comparison of Conventional and Microwave Sintering of Bioceramicscitations
- 2014Microwave sintering of large size pieces with complex shapecitations
- 2014Effects of microwave sintering on intrinsic defects concentrations in ZnO-based varistorscitations
- 2013Processing of reaction-bonded B4C-SiC composites in a single-mode microwave cavitycitations
- 2013Frittage micro-ondes en cavité monomode de biocéramiquescitations
- 2013Interrelation Between the Variety and the Mechanical Properties of Flax Fibrescitations
Places of action
Organizations | Location | People |
---|
document
Fabrication of doped b-tricalcium phosphate bioceramics by robocasting for bone repair applications
Abstract
b-tricalcium phosphate (b-TCP, b-Ca 3 (PO 4 ) 2 ) is one of the most attractive biomaterials for bone repair since it shows an excellent biological compatibility, osteoconductivity, and resorbability. It is already commercialized under granules or preforms for bone filling but there are still some issues for b-TCP porous scaffolds fabrication. Indeed, b-TCP cannot be used as scaffolds in large bone defects or in load-bearing areas due to its weak mechanical properties related to insufficient densification level. Indeed, the sintering temperature is limited because of the occurrence of a phase transition b to a-TCP at 1150°C with a large lattice expansion causing microcracks and reducing shrinkage during sintering. The thermal stability can be increased by the incorporation of dopants inside the b-TCP lattice. Indeed, such dopants like cations can replace the calcium inside the structure and stabilize the b phase reaching higher densities. Moreover, dopants can also improve biological properties of b-TCP as bone implant like the osteoconductivity or the antibacterial behaviour. In this work, doped b-TCP powders are synthetized by coprecipitation of Ca(NO 3 ) 2 and (NH 4 ) 2 HPO 4 solutions in presence of magnesium, strontium, silver and copper cations in order to prevent the phase transformation, increase the sintering temperature as well as the mechanical properties and bring an antibacterial behaviour. Rapid microwave sintering can then be successfully applied with a limited grain growth and compared with conventional sintering. Cytotoxicity and antibacterial evaluation are conducted to assess the potential of the doped b-TCP. Finally, 3D-printable suspensions are prepared from optimized doped powder to manufacture porous scaffolds by robocasting using water-based inks.