People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jinschek, Joerg R.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Effect of electron dose rate on the total dose tolerance limit in ZIF 8 metal organic framework (MOF)
- 2023Microstructural Evolution of One and Two step Heat Treatments on Electron Beam Powder Bed Fusion Fabricated Haynes 282
- 2023Microstructural Heterogeneities in Electron Beam Additively Manufactured Haynes 282
- 2023Observations of ‘far from equilibrium’ phenomena under in reactor thermal conditions using in situ TEM
- 2023In situ TEM observations of thermally activated phenomena under additive manufacturing process conditions
- 2023Strengthening of Pre-treated Aluminum During Ultrasonic Additive Manufacturing
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023In-situ S/TEM Visualization of Metal-to-Metal Hydride Phase Transformation of Magnesium Thin Films
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282
- 2022Preface to the special issuecitations
- 2022Strengthening of pretreated aluminum during ultrasonic additive manufacturingcitations
- 2009The Titan Environmental Transmission Electron Microscopecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Microstructural Evolution of One and Two step Heat Treatments on Electron Beam Powder Bed Fusion Fabricated Haynes 282
Abstract
Haynes 282 was found to be an ideal candidate in industrial gas turbine engine applications due to high temperature creep resistance and strength. As a promising fabrication method, additive manufacturing (AM) has emerged as a cost- and material-efficient method to produce near net shape. However, it proves difficult to manufacture desired microstructures, especially when compared to conventional processing methods. One way to achieve desired microstructures and properties in AM builds is to use post-process heat treatments. In this study, we investigated the microstructural evolution of a Haynes 282 pyramidal build subjected to a one-step and a two-step aging treatment. A systematic study of both the as-fabricated and heat-treated samples was performed using scanning electron microscopy, electron backscattered diffraction, and Vickers hardness mapping. The mechanism governing the microstructural evolution from the as-fabricated state to the aged state will be discussed.