People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jinschek, Joerg R.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Effect of electron dose rate on the total dose tolerance limit in ZIF 8 metal organic framework (MOF)
- 2023Microstructural Evolution of One and Two step Heat Treatments on Electron Beam Powder Bed Fusion Fabricated Haynes 282
- 2023Microstructural Heterogeneities in Electron Beam Additively Manufactured Haynes 282
- 2023Observations of ‘far from equilibrium’ phenomena under in reactor thermal conditions using in situ TEM
- 2023In situ TEM observations of thermally activated phenomena under additive manufacturing process conditions
- 2023Strengthening of Pre-treated Aluminum During Ultrasonic Additive Manufacturing
- 2023Study in Phase-Transformation Temperature in Nitinol by In Situ TEM Heating
- 2023The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
- 2023In-situ S/TEM Visualization of Metal-to-Metal Hydride Phase Transformation of Magnesium Thin Films
- 2023Probing the Effects of Cyclic Heating in Metal Additive Manufacturing by means of a Quasi in situ EBSD Study
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Study of Phase-transformation Behavior in Additive Manufacturing of Nitinol Shape Memory Alloys by In Situ TEM Heating
- 2023Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282
- 2022Preface to the special issuecitations
- 2022Strengthening of pretreated aluminum during ultrasonic additive manufacturingcitations
- 2009The Titan Environmental Transmission Electron Microscopecitations
Places of action
Organizations | Location | People |
---|
conferencepaper
The effect of cyclic heat treatment on microstructure evolution during Plasma Arc Additive Manufacturing employing an SEM in-situ heating study
Abstract
Processing of materials far from equilibrium conditions, i.e., at extreme temperature gradients (up to 10<sup>6</sup> K/m) and/or rapid temperature changes (up to 10<sup>5</sup> K/s), as in additive manufacturing (AM), causes the formation of metastable phases and induce directional microstructural alterations with a significant impact on overall part properties. While a part is subsequently being built layer-by-layer, previously formed layers are subjected to cyclic heat input that can result in element diffusion, phase transitions, and/or modifications of the grain morphology. As a result, the microstructure of near-net-shape AM components varies across the component leading to local- and design-specific variations in application-critical properties.<br/><br/>To capture these structural variations and identify significant trends, new approaches in material characterization are required. In the present work, in-situ SEM methods to understand the complex spatial-temporal thermal transients experienced by AM components during fabrication and post-processing have been developed. This study is critical for understanding and utilizing the influence of variable heat input to control the microstructure of AM-manufactured components, the optimization of process parameters as well as the design of new alloys by allowing to simulate the far-from-equilibrium processing conditions.<br/><br/>Supported by COMSOL simulations, in-situ SEM heating studies using a MEMS heater were performed to mimic AM rapid thermal conditions and to understand dynamic solid-state processes during AM. The microstructural changes were investigated by electron backscatter diffraction (EBSD) and compared to the final microstructure of different layers. The conducted study allows drawing conclusions on the feasibility of SEM-based heating experiments to reproduce microstructures development during the Plasma Arc Additive manufacturing process.