People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fabricius, Ida Lykke
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Strain modeling in a marly chalk reservoir
- 2022Effect of Pyrite in Water Saturation Evaluation of Clay-Rich Carbonatecitations
- 2020Porosity in chalk – roles of elastic strain and plastic straincitations
- 2019Influence of temperature cycling and pore fluid on tensile strength of chalkcitations
- 2017Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T-1/T-2 Ratio
- 2016Wettability of Chalk and Argillaceous Sandstones Assessed from T1/T2 Ratio
- 2014Burial stress and elastic strain of carbonate rockscitations
- 2011Petrophysical properties of greensand as predicted from NMR measurementscitations
- 2010Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluidscitations
- 2008Chalk porosity and sonic velocity versus burial depthcitations
- 2007Elastic behaviour of North Sea chalkcitations
- 2000BET measurements: Outgassing of mineralscitations
Places of action
Organizations | Location | People |
---|
document
Strain modeling in a marly chalk reservoir
Abstract
Traditionally, the interpretation of rock-mechanical test results and geomechanical reservoir performance focus on describing stress. Rock strength is typically defined as the peak stress attained before failure. Nevertheless, while rock strength in chalk is strongly dependent on properties such as porosity, cementation and saturating fluid, failure strains are remarkably similar for different specimens and saturating fluids when testing under oedometer conditions (Figure 1A). We propose a method to derive the elastic strain of a formation using petrophysical logging data. We can assess how susceptible to pore collapse each interval is by comparing present levels of elastic strain along a borehole against geomechanical testing data.