People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duc, Myriam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymerscitations
- 2016Temperature effect on mechanical and physical proprieties of Na or K alkaline silicate activated metakaolin-based geopolymers
- 2015A mineralogical approach of the interactions between bitumen, clay and water in hot mix asphalt (HMA)
- 2012Role of interfacial chemistry on the rheology and thermo-mechanical properties of claypolymer nanocomposites for building applicationscitations
- 2006Coupled chemical processes at clay/electrolyte interface: A batch titration study of Na-montmorillonitescitations
Places of action
Organizations | Location | People |
---|
document
A mineralogical approach of the interactions between bitumen, clay and water in hot mix asphalt (HMA)
Abstract
Clay fines are known to reduce the water resistance of bitumen-aggregates binding and cause stripping in Asphalt Concrete (AC) mixtures. To address this phenomenon, a better understanding of the mineralogical composition of aggregates is needed as well as an assessment of the bitumen-clay-water interactions. This paper contributes to reach this goal from a mineralogical perspective. The most common clays in natural aggregates, kaolinite, illite and montmorillonite, were used to prepare thin clay films and artificial clay-rich aggregates. The bitumen-clay interaction was studied using the sessile drop and the Oliensis spot tests on those thin clay films, whereas Duriez tests allowed measuring the stripping potential of AC mixtures containing the clay-rich aggregates. The results show that the water-bitumen-clay interaction and water resistance of the AC mixture are specific to the clay mineralogy. Furthermore, they show that the bitumenclay interaction may be captured upon determining the surface energy of bitumen, the chemical composition and pH value of the clay and the bitumen-clay compatibility. Hence, predicting the water resistance of clay rich AC mixtures from mineralogical properties of the bitumen-clay interaction seems feasible.