Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Chi-Wei

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015A mineralogical approach of the interactions between bitumen, clay and water in hot mix asphalt (HMA)citations

Places of action

Chart of shared publication
Hammoum, Ferhat
1 / 13 shared
Duc, Myriam
1 / 5 shared
Descantes, Yannick
1 / 1 shared
Magnan, Jean Pierre
1 / 1 shared
Gaudefroy, Vincent
1 / 8 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Hammoum, Ferhat
  • Duc, Myriam
  • Descantes, Yannick
  • Magnan, Jean Pierre
  • Gaudefroy, Vincent
OrganizationsLocationPeople

document

A mineralogical approach of the interactions between bitumen, clay and water in hot mix asphalt (HMA)

  • Hammoum, Ferhat
  • Duc, Myriam
  • Descantes, Yannick
  • Magnan, Jean Pierre
  • Chen, Chi-Wei
  • Gaudefroy, Vincent
Abstract

Clay fines are known to reduce the water resistance of bitumen-aggregates binding and cause stripping in Asphalt Concrete (AC) mixtures. To address this phenomenon, a better understanding of the mineralogical composition of aggregates is needed as well as an assessment of the bitumen-clay-water interactions. This paper contributes to reach this goal from a mineralogical perspective. The most common clays in natural aggregates, kaolinite, illite and montmorillonite, were used to prepare thin clay films and artificial clay-rich aggregates. The bitumen-clay interaction was studied using the sessile drop and the Oliensis spot tests on those thin clay films, whereas Duriez tests allowed measuring the stripping potential of AC mixtures containing the clay-rich aggregates. The results show that the water-bitumen-clay interaction and water resistance of the AC mixture are specific to the clay mineralogy. Furthermore, they show that the bitumenclay interaction may be captured upon determining the surface energy of bitumen, the chemical composition and pH value of the clay and the bitumen-clay compatibility. Hence, predicting the water resistance of clay rich AC mixtures from mineralogical properties of the bitumen-clay interaction seems feasible.

Topics
  • impedance spectroscopy
  • surface
  • chemical composition
  • pH value
  • surface energy