People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Semmar, Nadjib
Université d'Orléans
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Thin film mediated and direct observation of LIPSS on soda-lime glass by femtosecond IR laser beamcitations
- 2024Nanostructured Oxide (SnO2, FTO) Thin Films for Energy Harvesting: A Significant Increase in Thermoelectric Power at Low Temperaturecitations
- 2024Influence of thin film for LIPSS formation on soda-lime glass using SHG femtosecond laser beam
- 2023Study of CO2 Laser-induced Thermal Stress Mechanisms on Decorative Soda-lime Glasscitations
- 2023Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Siliconcitations
- 2022LIPSS formation by picosecond laser irradiation of magnetron sputtered gadolinium-doped ceria thin films
- 2022LIPSS formation by picosecond laser irradiation of magnetron sputtered gadolinium-doped ceria thin films
- 2022Laser texturing of PVD thin-film ceramics for micro-battery applications
- 2022Nano/micro surface structuring of CGO/YSZ oxide thin films by picosecond laser beam
- 2021LIPSS formation by picosecond laser irradiation of magnetron sputtered CGO thin films
- 2021LIPSS formation by picosecond laser irradiation of magnetron sputtered CGO thin films
- 2021Comparative study of the picosecond laser surface texturing of YSZ and CGO on YSZ films for electrochemical cells applications
- 2021Polystyrene Thin Films Nanostructuring by UV Femtosecond Laser Beam: From One Spot to Large Surfacecitations
- 2019Inkjet-printed aluminum-doped zinc oxide nanostructures
- 2018Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectricscitations
- 2018Graphene - mesoporous Si or Ge nanocomposites for thermoelectric applications
- 2017Nanostructuring of titanium oxide thin film by UV femtosecond laser beam: from one spot to large surfacescitations
- 2017Laser sintering of silver-based inkjet printed electrodes
- 2017Growth and properties of calcium cobaltite thin films by pulsed-laser deposition
- 2016Thermoelectric properties of thin film materials : influence of the substrate and contact resistance
- 2015Oxide-based thermoelectric micro-generators for ambiant energy harvesting
- 2015Experimental and numerical analysis of crack-free DPSS laser dicing of borosilicate glasscitations
- 2014Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputteringcitations
- 2014Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputteringcitations
- 2014Titanium oxide thin film growth by magnetron sputtering: Total energy flux and its relationship with the phase constitutioncitations
- 2013Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmospherecitations
- 2013Plasma-based growth and functionalization of CNT from first steps to technological applications
- 2013IR emission from the target during plasma magnetron sputter depositioncitations
- 2013Energy flux measurements at the substrate deposition during reactive and non-reactive magnetron sputter deposition processes
- 2013Thermal and electrical characterization of thin carbon nanotubes films
- 2012Carbon nanotube growth from metallic nanoparticles deposited by pulsed-laser deposition on different substratescitations
- 2012Molecular dynamics simulations of cluster growth in nanostructured materials
- 2008‘Numerical simulation of Si nanosecond laser annealing by COMSOLMultiphysics : case of IR semi transparent medium
- 2004Laser treatment of a steel surface in ambient aircitations
Places of action
Organizations | Location | People |
---|
document
LIPSS formation by picosecond laser irradiation of magnetron sputtered gadolinium-doped ceria thin films
Abstract
The interaction between ultrashort laser beam pulses with a material can induce the formation of periodic surface micro/nano structures commonly referred to as LIPSS (Laser Induced Periodic Surface Structures). Controlling such a process can pave the way for the tuning of the physico-chemical properties of the material?s surface. In the case of electrochemical cells made of assembly of thin films incorporating Gadolinium-Doped Ceria (GDC), LIPSS formation can enhance the performance of the electrode by increasing its surface area and thus enhancing the reactions of the active species at the electrode/electrolyte interface. In this work, a Nd: YAG laser beam operating at the third harmonic (355 nm) and emitting 40 ps laser pulses is employed to irradiate a 4x4 mm2 surface of a GDC thin layer, that is deposited by magnetron sputtering on yttria-stabilized zirconia (YSZ) substrate. Using high resolution scanning electron microscopy (HR-SEM), it is found that LIPSS are produced at a lowfluence laser multi-pulse regime close to the ablation threshold. In agreement with the literature, it is found that these periodic structures can be distinguished depending on their spatial period and can be classified as low and high spatial frequency LIPSS, LSFL and HSFL, respectively. However, under the static mode (irradiation of the same area of 500 µm diameter) and under appropriate values of laser fluence (50 to 250 mJ/cm2) with a number of pulses varying from 1 to 70, we have also identified two types of LSFLs that are distinct in their direction and spatial period. LSFL#1 are parallel to the beam polarization, with a typical period of 238 nm and found in the center of the irradiated zone, whereas LSFL#2 are oriented perpendicular to beam polarization with a spatial period of 296 nm and found on the rim of the irradiated zone. Our results suggest that the appearance of the two types of LSFL within the irradiated spot can be attributed to different metallic and dielectric behaviors of the inner and outer zones of the GDC film, respectively. These differences are attributed to increased oxygen losses under the higher beam intensity region. We have also optimized the process parameters to generate well resolved LIPSS under beam scanning conditions. Using numerical tools for SEM/AFM images and thanks to a simple geometric model developed on such structures, the enhancement of the specific surface following laser structuring is estimated to be in the range from 50 to 80%