People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Semmar, Nadjib
Université d'Orléans
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Thin film mediated and direct observation of LIPSS on soda-lime glass by femtosecond IR laser beamcitations
- 2024Nanostructured Oxide (SnO2, FTO) Thin Films for Energy Harvesting: A Significant Increase in Thermoelectric Power at Low Temperaturecitations
- 2024Influence of thin film for LIPSS formation on soda-lime glass using SHG femtosecond laser beam
- 2023Study of CO2 Laser-induced Thermal Stress Mechanisms on Decorative Soda-lime Glasscitations
- 2023Effect of Nanographene Coating on the Seebeck Coefficient of Mesoporous Siliconcitations
- 2022LIPSS formation by picosecond laser irradiation of magnetron sputtered gadolinium-doped ceria thin films
- 2022LIPSS formation by picosecond laser irradiation of magnetron sputtered gadolinium-doped ceria thin films
- 2022Laser texturing of PVD thin-film ceramics for micro-battery applications
- 2022Nano/micro surface structuring of CGO/YSZ oxide thin films by picosecond laser beam
- 2021LIPSS formation by picosecond laser irradiation of magnetron sputtered CGO thin films
- 2021LIPSS formation by picosecond laser irradiation of magnetron sputtered CGO thin films
- 2021Comparative study of the picosecond laser surface texturing of YSZ and CGO on YSZ films for electrochemical cells applications
- 2021Polystyrene Thin Films Nanostructuring by UV Femtosecond Laser Beam: From One Spot to Large Surfacecitations
- 2019Inkjet-printed aluminum-doped zinc oxide nanostructures
- 2018Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectricscitations
- 2018Graphene - mesoporous Si or Ge nanocomposites for thermoelectric applications
- 2017Nanostructuring of titanium oxide thin film by UV femtosecond laser beam: from one spot to large surfacescitations
- 2017Laser sintering of silver-based inkjet printed electrodes
- 2017Growth and properties of calcium cobaltite thin films by pulsed-laser deposition
- 2016Thermoelectric properties of thin film materials : influence of the substrate and contact resistance
- 2015Oxide-based thermoelectric micro-generators for ambiant energy harvesting
- 2015Experimental and numerical analysis of crack-free DPSS laser dicing of borosilicate glasscitations
- 2014Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputteringcitations
- 2014Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputteringcitations
- 2014Titanium oxide thin film growth by magnetron sputtering: Total energy flux and its relationship with the phase constitutioncitations
- 2013Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmospherecitations
- 2013Plasma-based growth and functionalization of CNT from first steps to technological applications
- 2013IR emission from the target during plasma magnetron sputter depositioncitations
- 2013Energy flux measurements at the substrate deposition during reactive and non-reactive magnetron sputter deposition processes
- 2013Thermal and electrical characterization of thin carbon nanotubes films
- 2012Carbon nanotube growth from metallic nanoparticles deposited by pulsed-laser deposition on different substratescitations
- 2012Molecular dynamics simulations of cluster growth in nanostructured materials
- 2008‘Numerical simulation of Si nanosecond laser annealing by COMSOLMultiphysics : case of IR semi transparent medium
- 2004Laser treatment of a steel surface in ambient aircitations
Places of action
Organizations | Location | People |
---|
document
LIPSS formation by picosecond laser irradiation of magnetron sputtered CGO thin films
Abstract
The interaction between ultrashort laser beam pulses with thin films induces the formation of surface micro/nanostructures. These laser-induced periodic surface structures (LIPSS), or ripples, could improve the physico-chemical properties of thin films including their specific surface. In the case of electrochemical cells made of an assembly of thin films, they can further improve the performance of the electrode by increasing the specific contact surface by laser structuring of a wide range of materials which is an increasingly powerful technique for species active at the electrode / electrolyte interface. In this work, a picosecond Nd: YAG laser operating at its third harmonic (λ=355 nm) is used to irradiate the surface of gadolinium-doped ceria (CGO) thin films, grown by on yttria-stabilized zirconia (YSZ) by magnetron sputtering. The morphological characteristics of the thin films and their structuring were observed by high resolution scanning electron microscopy (HR-SEM). LIPSS are generally produced in a low fluence laser multi-pulse regime close to the ablation threshold. They were obtained with the period of approximately 283 nm under appropriate values of laser fluence (F from 184 to 295 mJ/cm2) and scanning speed (0.2 mm/s to 0.4 mm/s). Exceeding the threshold leads to surface ablation. In agreement with the literature, it has been noted that these periodic structures can be classified as Low Spatial Frequency LIPSS (LSFL) or High Spatial Frequency LIPSS (HSFL). The LSFL period is generally close to the beam wavelength λ, presenting a period varying in 0.5λ-λ. On the other hand, HSFL refers to ripples having a period smaller than the beam wavelength (< 0.5λ). Our work focusses on the optimization of laser parameters to generate clear and high resolution LSFL/HSFL without ablating the CGO layer. Using numerical tools for SEM/AFM images, the enhancement of the specific surface of the CGO films will also be discussed.