Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kheir, Mohamed

  • Google
  • 3
  • 5
  • 2

Nokia (Germany)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2010Material-loaded high q-factor slot resonator and measurement of relative permittivity2citations
  • 2010A novel mode-identification technique for material characterization using whispering-gallery-mode resonatorscitations
  • 2008Measurement of the dielectric constant of liquids using a hybrid cavity-ring resonatorcitations

Places of action

Chart of shared publication
Abdel-Rahman, A.
1 / 2 shared
Omar, A.
2 / 3 shared
Verma, A. K.
1 / 4 shared
Hammad, H. F.
2 / 2 shared
Omar, A. S.
1 / 2 shared
Chart of publication period
2010
2008

Co-Authors (by relevance)

  • Abdel-Rahman, A.
  • Omar, A.
  • Verma, A. K.
  • Hammad, H. F.
  • Omar, A. S.
OrganizationsLocationPeople

document

Measurement of the dielectric constant of liquids using a hybrid cavity-ring resonator

  • Omar, A. S.
  • Kheir, Mohamed
  • Hammad, H. F.
Abstract

<p>A simple and E&amp;Plusmn;cient solution for extracting the dielectric constant of liquids utilizing microstrip ring resonators simultaneously with rectangular waveguide (RWG) cavities is presented. Employing both techniques in a single structure is a confirmation procedure rather than comparing the obtained results with any other standard method. The proposed structure is intended to be mechanically suited for holding liquid samples without enclosing any air gaps which enhances the measurement sensitivity. Since the structure is being totally enclosed, the loaded quality factor will be consequently increased due to the absence of radiation losses. The waveguide cavity acts as metallic enclosure for the ring circuit in order to maintain the design procedures as well.</p>

Topics
  • impedance spectroscopy
  • dielectric constant