Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pavanram, P.

  • Google
  • 6
  • 21
  • 847

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Additively Manufactured Biodegradable Porous Zinc Implants for Orthopeadic Applicationscitations
  • 2021Biocompatibility and Absorption Behavior in Vitro of Direct Printed Porous Iron Porous Implantscitations
  • 2020Additively manufactured biodegradable porous zinc135citations
  • 2019Additively manufactured functionally graded biodegradable porous iron158citations
  • 2018Additively manufactured biodegradable porous iron219citations
  • 2017Additively manufactured biodegradable porous magnesium335citations

Places of action

Chart of shared publication
Mol, Arjan
5 / 64 shared
Jahr, Holger
5 / 6 shared
Lietaert, K.
4 / 9 shared
Leeflang, M. A.
5 / 25 shared
Zhou, Jie
6 / 31 shared
Pouran, B.
5 / 11 shared
Kubo, Yusuke
1 / 1 shared
Weinans, Harrie
5 / 12 shared
Fockaert, L. I.
3 / 5 shared
Yilmaz, A.
2 / 8 shared
Zadpoor, Amir, A.
5 / 38 shared
Taheri, Peyman
1 / 16 shared
Li, Wei
1 / 6 shared
San, H.
1 / 1 shared
Paggi, U.
1 / 1 shared
Zhang, X. Y.
1 / 3 shared
Bobbert, Françoise Siu Lin
1 / 2 shared
Gonzalez-Garcia, Yaiza
1 / 27 shared
Schröder, K. U.
1 / 1 shared
Jahr, H.
1 / 2 shared
Tumer, Nazli
1 / 3 shared
Chart of publication period
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Mol, Arjan
  • Jahr, Holger
  • Lietaert, K.
  • Leeflang, M. A.
  • Zhou, Jie
  • Pouran, B.
  • Kubo, Yusuke
  • Weinans, Harrie
  • Fockaert, L. I.
  • Yilmaz, A.
  • Zadpoor, Amir, A.
  • Taheri, Peyman
  • Li, Wei
  • San, H.
  • Paggi, U.
  • Zhang, X. Y.
  • Bobbert, Françoise Siu Lin
  • Gonzalez-Garcia, Yaiza
  • Schröder, K. U.
  • Jahr, H.
  • Tumer, Nazli
OrganizationsLocationPeople

document

Additively Manufactured Biodegradable Porous Zinc Implants for Orthopeadic Applications

  • Mol, Arjan
  • Jahr, Holger
  • Lietaert, K.
  • Leeflang, M. A.
  • Zhou, Jie
  • Pouran, B.
  • Kubo, Yusuke
  • Pavanram, P.
  • Weinans, Harrie
  • Fockaert, L. I.
Abstract

As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal bone substitute should provide sufficient mechanical support, but pure Zn itself is not strong enough for load-bearing medical applications. Modern processing techniques, like additive manufacturing (AM), can improve mechanical strength of Zn. To better mimic the in vivo situation in the human body, we evaluated the degradation behavior of porous Zn implants in vitro under dynamic conditions. Our study applied selective laser melting (SLM) to build topographically ordered absorbable Zn implants with superior mechanical properties. Specimens were fabricated from pure Zn powder using SLM and diamond unit cell topological design. In vitro degradation was performed under both static and dynamic conditions in a custom-built set-up under cell culture conditions (37 °C, 20% O2 and 5% CO2) for up to 28 days. Mechanical properties of the porous structures were determined according to ISO 13314: 2011 at different immersion time points. Modified ISO 10993 standards were used to evaluate biocompatibility through direct cell seeding and indirect extract-based cytotoxicity tests (MTS assay, Promega) against identically designed porous titanium (Ti-6Al-4V) specimens as reference material. Twenty-four hours after cell seeding, its efficacy was evaluated by Live-Dead staining (Abcam) and further analyzed using dual channel fluorescent optical imaging (FOI) and subsequent flow cytometric quantification. Porous Zn implants were successfully produced by means of SLM with a yield strength and Young's modulus in the range of 3.9–9.6 MPa and 265–570 MPa, respectively. Dynamic flow significantly increased the degradation rate of AM porous Zn after 28 days. Results from Zn extracts were similar to Ti-6Al-4V with >95% of cellular activity at all tested time points, confirming level 0 cytotoxicity (i.e., This study clearly shows the great potential of AM porous Zn as a bone substituting material. Moreover, we demonstrate that complex topological design permits control of mechanical properties and degradation behavior.

Topics
  • porous
  • impedance spectroscopy
  • Magnesium
  • Magnesium
  • zinc
  • strength
  • selective laser melting
  • titanium
  • iron
  • yield strength
  • biocompatibility