Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pereira, Hfsg

  • Google
  • 3
  • 6
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2010Analysis of Constant and Variable Amplitude Strain-Life Data Using a Novel Probabilistic Weibull Regression Model11citations
  • 2008Analysis of Fatigue Damage under Block Loading in a Low Carbon Steel21citations
  • 2006A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approachcitations

Places of action

Chart of shared publication
Castillo, E.
1 / 5 shared
Pinto, H.
1 / 15 shared
Fernandez Canteli, A.
1 / 12 shared
De Jesus, Amp
3 / 92 shared
Fernandes, Aa
2 / 34 shared
Ribeiro, As
2 / 11 shared
Chart of publication period
2010
2008
2006

Co-Authors (by relevance)

  • Castillo, E.
  • Pinto, H.
  • Fernandez Canteli, A.
  • De Jesus, Amp
  • Fernandes, Aa
  • Ribeiro, As
OrganizationsLocationPeople

document

A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approach

  • Pereira, Hfsg
  • Fernandes, Aa
  • Ribeiro, As
  • De Jesus, Amp
Abstract

This paper presents a discussion on the performance of continuum plasticity models for fatigue lifetime assessment according to the local strain approach. Several cyclic plasticity phenomena such as the cyclic hardening/softening, ratchetting, cyclic mean stress relaxation and non-proportional cyclic hardening require, in general, specialized continuum plasticity models. Continuum plasticity models, available in commercial finite element codes (e.g. ANSYS®), with linear, multilinear and nonlinear kinematic hardening are identified using the experimental information available for a pressure vessel steel - the P355NL1 steel. The potentialities of these plasticity models to describe the material cyclic behaviour are discussed, limiting the discussion to proportional loading. The plasticity models are applied to evaluate the strain ranges and mean stresses of a nozzle-to-plate connection. Two analysis strategies are applied to extract the strain ranges, namely the Twice Yield (TY) and the Cycle-by-Cycle (CBC) methods. The mean stress is only evaluated using the CBC method since the TY method has been proposed only for evaluation of the strain ranges. It is demonstrated that the TY and CBC methods gives similar results for the linear and multilinear kinematic hardening plasticity models. The plasticity model can have an important effect on the evaluation of the mean stresses and thus on predicted strain-life results, if mean stress effects are taken into account in the local strain approach. Finally, the calculated strain ranges and mean stresses are used in the evaluation of the fatigue life of the nozzle-to-plate connection using a local strain approach, and predictions are compared with available experimental results. The effect of the mean stress is important for long lives and is very dependent on the continuum plasticity model and on the number of cycles modelled in the CBC extraction method. Although differences are observed in the estimation of the strain ranges, using the several plasticity models, relatively small differences in fatigue life estimations were resulted. Copyright © 2006 by ASME.

Topics
  • impedance spectroscopy
  • extraction
  • steel
  • fatigue
  • plasticity