People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Osorio Delgado, Marlon Andrés
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Isolation of cellulose microfibers and nanofibers by mechanical fibrillation in a water-free solventcitations
- 2019Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicinecitations
- 2014Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentationcitations
- 2013Bacterial cellulose nanocomposites developed by in-situ fermentation
Places of action
Organizations | Location | People |
---|
document
Bacterial cellulose nanocomposites developed by in-situ fermentation
Abstract
<p>In this research, a new methodology was developed to produce nanostructured composites of thermoplastic starch polymers/bacterial cellulose, throughout biosynthesis of cellulose by Gluconacetobacter medellinensis sp. nov bacteria. Due to the hydrophilic nature of starch, it was plasticizer with glycerol and cross-linked with citric acid to improve the mechanical and physical properties of nanocomposite films. Results indicate that the incorporation of cellulose nanofibrils and crosslinking process can improve mechanical and thermal properties, and suggest that these materials are promising candidates in food packing industry.</p>