Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ouf, Mohamed Elsadek

  • Google
  • 17
  • 11
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2022Improving the Performance Grade and Traffic Loading of Egyptian Asphalt Binders by Recycled Polyethylene Modification1citations
  • 2022“Improving the Performance of Highways and Airports Flexible Pavement to Resist the Effect of Octahedral Shear Stresses” citations
  • 2022Sustainable repairing and improvement of concrete properties using artificial bacterial consortium11citations
  • 2016Using Nano Materials for Stabilization of Subgrade Soilscitations
  • 2015Developing an Environmentally Sustainable Hot Mix Asphalt Using Recycled Concrete Aggregatescitations
  • 2015Developing an Environmentally Sustainable Hot Mix Asphalt Using Recycled Concrete Aggregatescitations
  • 2015"Controlling Rutting Performance of Hot Mix Asphalt"citations
  • 2015Using Nano Materials for Stabilization of Subgrade Soilscitations
  • 2015"Controlling Rutting Performance of Hot Mix Asphalt" citations
  • 2014Using Nano Materials for Stabilisation of Road Base citations
  • 2014Using of Waste Materials to Stabilize Expansive Clay for Airport Rigid Pavementcitations
  • 2013Using of Waste Materials to Stabilize Expansive Clay for Airport Rigid Pavementcitations
  • 2012Towards Sustainability: Artificial Intelligent Based Approach for Soil Stabilization Using Various Pozzolans 3citations
  • 2012Effect of Using Pozzolanic Materials on The Properties ofEgyptian Soilscitations
  • 2012EFFECT OF USING POZZOLANIC MATERIALS ON THE PROPERTIES OF EGYPTIAN SOILScitations
  • 2012AI-Based Approach for Optimum Soil Stabilization citations
  • 2011Investigating the Economic Design of Airport Rigid Pavement on Expansive Clay Soil Using Waste Materialscitations

Places of action

Chart of shared publication
Mostafa, Abdel Zaher E. A.
1 / 1 shared
Ayoub, H. S.
1 / 1 shared
Osman, Omar
1 / 1 shared
Eraky, Ahmed
1 / 1 shared
Mostafa, E. A.
1 / 1 shared
Jamal, Abdel Latif
1 / 1 shared
Abdolsamedp, Abdelbaset A.
1 / 1 shared
Mostafa, Abdelzaher
2 / 3 shared
Ibrahim, M.
2 / 9 shared
Hosny, Ossama
1 / 1 shared
Elhakeem, Ahmed
1 / 2 shared
Chart of publication period
2022
2016
2015
2014
2013
2012
2011

Co-Authors (by relevance)

  • Mostafa, Abdel Zaher E. A.
  • Ayoub, H. S.
  • Osman, Omar
  • Eraky, Ahmed
  • Mostafa, E. A.
  • Jamal, Abdel Latif
  • Abdolsamedp, Abdelbaset A.
  • Mostafa, Abdelzaher
  • Ibrahim, M.
  • Hosny, Ossama
  • Elhakeem, Ahmed
OrganizationsLocationPeople

thesis

“Improving the Performance of Highways and Airports Flexible Pavement to Resist the Effect of Octahedral Shear Stresses”

  • Ouf, Mohamed Elsadek
Abstract

It has been acknowledged that, the rheological properties of asphalt binder as aviscoelastic material, play an important role in regulating cohesion and internalfriction of hot mix asphalt (HMA), in integration with aggregates interlocking, toprotect the asphalt concrete pavement (ACP) surface layer against any inadvertentloads. Due to the recent worldwide increase in the combination of individualwheel load (IWL) and tire pressure of the new-type aircraft, shear relateddistresses have been observed in some Egyptian airfields. Top-Down cracks(TDCs) have been also reported as one of the most surface deterioration in thisperspective. Moreover, creep has been arising in ACP especially, in southernlatitude airports, where surface layer is exposed excessively to high temperatureambient. In this decade, the criterion of admissible octahedral shear stresses(OSSs) in the flexible surface layer, has been used successfully as a judiciousdesign tool, for the accurate assessment of ACP performance. Consequently, theaim of this work, was to study the impact of using bitumen products throughdifferent two Egyptian companies (Alex and Suez), modified by recycled lowdensity polyethylene (LDPE), on the OSS resistance of ACP surface layer. OSSrelated rutting and cracking criteria of HMA have been subject to intensiveevaluation in the light of mechanistic-empirical (M-E) methodology. In thiscontext, a number of simple performance tests (SPTs) such as, flow number (FN)test, dynamic modulus (E*) test and tri-axial compression test have been appliedon typical dense-graded HMA samples, “which were designed by MarshallMethod”. The obtained E* results were compared to other data estimated byIII standard E* predictive mathematical models such as Hirsch, Witczak (1-37A) andWitczak (1-40D), to evaluate their capabilities of simulating the virgin andmodified HMA at the design level. Master curves analysis of OSS parameters, hasrevealed a significant enhancement of performance grade (PG) as well as ACPsurface significant resistance to OSS and rutting, after LDPE modification, inagreement with the traditional empirical and rheological indices. Keywords: IWL, Airfields AC pavement distresses, Enhanced PG LPDEmodified binder, HMA Marshall samples Rheology, predictive E* modeling,Octahedral shear stress master curve.

Topics
  • impedance spectroscopy
  • surface
  • crack
  • compression test
  • creep