Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fichtner, M.

  • Google
  • 14
  • 80
  • 403

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2020Metal (boro-) hydrides for high energy density storage and relevant emerging technologies70citations
  • 2019Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO$_{3}$ Surface Modification on the Electrochemical Performance40citations
  • 2018Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery31citations
  • 2015Development of new anode composite materials for fluoride ion batteriescitations
  • 2015Single step tranformation of sulphur to Li₂S₂/Li₂S in Li-S batteriescitations
  • 2013A facile synthesis of a carbon-encapsulated Fe₃O₄ nanocomposite and its performance as anode in lithium-ion batteries22citations
  • 2013Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storage19citations
  • 2012Synthesis and characterisation of a mesoporous carbon/calcium borohydride nanocomposite for hydrogen storage19citations
  • 2012Tailored heat transfer characteristics of pelletized LiNH2-MgH2 and NaAlH4 hydrogen storage materials48citations
  • 2011On the decomposition of the 0.6LiBH4-0.4Mg(BH4)2 eutectic mixture for hydrogen storage27citations
  • 2011Modified synthesis of [Fe/LiF/C] nanocomposites, and its application as conversion cathode material in lithium batteries50citations
  • 2009Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank77citations
  • 2004Nanotechnological approaches in the development of materials for hydrogen storagecitations
  • 2004Nanotechnological aspects in materials for hydrogen storagecitations

Places of action

Chart of shared publication
Vinayan, B. P.
1 / 1 shared
Behm, R. J.
3 / 3 shared
Cambaz, M. A.
1 / 1 shared
Diemant, T.
3 / 4 shared
Geßwein, H.
1 / 11 shared
Schiele, A.
1 / 3 shared
Brezesinski, Torsten
1 / 30 shared
Mazilkin, A.
1 / 6 shared
Ehrenberg, H.
1 / 41 shared
Sarapuolva, A.
1 / 1 shared
Barlow, A. J.
1 / 2 shared
Barmi, M.
1 / 1 shared
Minakshi, Manickam
1 / 34 shared
Mitchell, D. R. G.
1 / 4 shared
Rongeat, C.
1 / 2 shared
Anji Reddy, M.
1 / 1 shared
Golla-Schindler, U.
1 / 1 shared
Kaiser, U.
1 / 13 shared
Helen, M.
1 / 1 shared
Reddy, M. A.
2 / 2 shared
Fanselau, K.
1 / 1 shared
Hahn, H.
4 / 26 shared
Prakash, R.
2 / 3 shared
Kübel, C.
2 / 13 shared
Ren, S.
1 / 2 shared
Mandal, T. K.
1 / 1 shared
Powell, A. K.
1 / 2 shared
Engel, M.
1 / 5 shared
Chakravadhanula, V. S. K.
1 / 14 shared
Kübel, Christian
1 / 44 shared
Breitung, Ben
1 / 14 shared
Trikalitis, P.
1 / 1 shared
Charalambopoulou, G.
1 / 1 shared
Stubos, A.
1 / 1 shared
Steriotis, Th.
1 / 1 shared
Bardaji, E. G.
1 / 1 shared
Ampoumogli, A.
1 / 2 shared
Hu, J.
1 / 32 shared
Pohlmann, C.
1 / 7 shared
Kieback, B.
1 / 76 shared
Weißgärber, T.
1 / 42 shared
Röntzsch, L.
1 / 13 shared
Bardaji, Eg
1 / 1 shared
Nale, Angeloclaudio
1 / 3 shared
Catti, Michele
1 / 4 shared
Ghafari, M.
1 / 6 shared
Mishra, A. K.
1 / 9 shared
Wall, C.
2 / 2 shared
Jensen, Jens Oluf
1 / 25 shared
Pfeifer, P.
1 / 10 shared
Klopper, Wim
2 / 4 shared
Leon, A.
2 / 3 shared
Kircher, O.
2 / 2 shared
Fuhr, O.
2 / 4 shared
Hübner, O.
2 / 2 shared
Chart of publication period
2020
2019
2018
2015
2013
2012
2011
2009
2004

Co-Authors (by relevance)

  • Vinayan, B. P.
  • Behm, R. J.
  • Cambaz, M. A.
  • Diemant, T.
  • Geßwein, H.
  • Schiele, A.
  • Brezesinski, Torsten
  • Mazilkin, A.
  • Ehrenberg, H.
  • Sarapuolva, A.
  • Barlow, A. J.
  • Barmi, M.
  • Minakshi, Manickam
  • Mitchell, D. R. G.
  • Rongeat, C.
  • Anji Reddy, M.
  • Golla-Schindler, U.
  • Kaiser, U.
  • Helen, M.
  • Reddy, M. A.
  • Fanselau, K.
  • Hahn, H.
  • Prakash, R.
  • Kübel, C.
  • Ren, S.
  • Mandal, T. K.
  • Powell, A. K.
  • Engel, M.
  • Chakravadhanula, V. S. K.
  • Kübel, Christian
  • Breitung, Ben
  • Trikalitis, P.
  • Charalambopoulou, G.
  • Stubos, A.
  • Steriotis, Th.
  • Bardaji, E. G.
  • Ampoumogli, A.
  • Hu, J.
  • Pohlmann, C.
  • Kieback, B.
  • Weißgärber, T.
  • Röntzsch, L.
  • Bardaji, Eg
  • Nale, Angeloclaudio
  • Catti, Michele
  • Ghafari, M.
  • Mishra, A. K.
  • Wall, C.
  • Jensen, Jens Oluf
  • Pfeifer, P.
  • Klopper, Wim
  • Leon, A.
  • Kircher, O.
  • Fuhr, O.
  • Hübner, O.
OrganizationsLocationPeople

document

Nanotechnological aspects in materials for hydrogen storage

  • Klopper, Wim
  • Leon, A.
  • Fichtner, M.
  • Kircher, O.
  • Fuhr, O.
  • Hübner, O.
Abstract

  Actual developments in the field of hydrogen storage mainly deal with the development of materials based on the principles of chemisorption (metal hydrides in general) and physisorption. A nanotechnological approach has turned out to be highly beneficial in this field. Complex aluminum hydrides, the so-called alanates, are chemisorption materials with high gravimetric storage densities for hydrogen. It will be shown that their dehydrogenation temperature depends on the grain size and that the kinetics of decomposition and hydrogen uptake are governed by nucleation and growth of the new phases [1,2]. Kinetic data suggest that diffusion processes in the solid limit the rate of their rehydrogenation. Hence, shortening of diffusion paths would be necessary to enhance the kinetics, e.g. by reduction of the grain size of the dehydrogenated material. Kinetic barriers interfere with the hydrogen uptake and release and it has been tried to reduce the barriers by using appropriate dopants. In various studies Ti turned out to be the most active element for the process. It will be shown that a nanocomposite consisting of sodium alanate (NaAlH4) and a catalytic amount of small ligand stabilized Ti clusters (Ti13) shows considerably increased exchange rates for H when compared to a state-of-the-art catalyst. Nanoscale physisorption materials have regained importance after a new class of nanomaterials with very high specific surface areas has been tested for hydrogen storage. Microporous isoreticular metal-organic frameworks (IR-MOFs) [3] seem to have the potential to store several weight% of hydrogen at room temperature and moderate pressures. In order to optimize these structures, theoretical investigations have been made [4] and results of a work will be shown about the binding energy of molecular hydrogen interacting with various (substituted) aromatic hydrocarbons.     [2]      O. Kircher and M. Fichtner, J. Appl. Phys. (in press)   [3]      N.L. Rosi et al., Science 300 (2003) 1127   [4]      O. Huebner, A. Gloess, M. Fichtner, and W. Klopper, J. Phys. Chem. A (in press).      

Topics
  • nanocomposite
  • surface
  • cluster
  • grain
  • grain size
  • phase
  • aluminium
  • Sodium
  • Hydrogen
  • decomposition