Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaudin, Théophile

  • Google
  • 5
  • 11
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Estimating the adsorption efficiency of sugar-based surfactants from QSPR models8citations
  • 2017Conformations of n-alkyl-α/β-D-glucopyranoside surfactants : Impact on molecular properties13citations
  • 2016Predictive models for amphiphilic properties of sugar-based surfactantscitations
  • 2015Data analysis of sugar-based surfactant properties : towards quantitative structure property relationshipscitations
  • 2015Mixture descriptors toward the development of Quantitative Structure-Property Relationship models for the flash points of organic mixtures68citations

Places of action

Chart of shared publication
Pezron, Isabelle
4 / 5 shared
Fayet, Guillaume
5 / 20 shared
Rotureau, Patricia
5 / 20 shared
Pourceau, G.
1 / 1 shared
Bonnet, V.
1 / 1 shared
Lu, H.
1 / 15 shared
Wadouachi, A.
1 / 1 shared
Benali, M.
1 / 1 shared
Drelich, A.
1 / 1 shared
Dao, T. T.
1 / 1 shared
Hecke, E. Van
1 / 1 shared
Chart of publication period
2019
2017
2016
2015

Co-Authors (by relevance)

  • Pezron, Isabelle
  • Fayet, Guillaume
  • Rotureau, Patricia
  • Pourceau, G.
  • Bonnet, V.
  • Lu, H.
  • Wadouachi, A.
  • Benali, M.
  • Drelich, A.
  • Dao, T. T.
  • Hecke, E. Van
OrganizationsLocationPeople

document

Data analysis of sugar-based surfactant properties : towards quantitative structure property relationships

  • Pezron, Isabelle
  • Pourceau, G.
  • Bonnet, V.
  • Lu, H.
  • Wadouachi, A.
  • Benali, M.
  • Drelich, A.
  • Dao, T. T.
  • Fayet, Guillaume
  • Hecke, E. Van
  • Rotureau, Patricia
  • Gaudin, Théophile
Abstract

Since the beginning of 20th century, numerous experimental studies have been conducted on surfactants. Tabulated properties, such as Critical Micelle Concentration (CMC), Krafft Temperature (Tk), equilibrium surface tension (Yeq), Efficiency (pC20) or Cloud Temperature (Tc) can be found in reference textbooks [1]. Progress of experimental investigations and modern instantaneous internet access to a large part of relevant scientific literature makes now possible to gather a widespread amount of data. Because of such large availability of data, it is now relevant to focus on particular families, in order to obtain a reliable overview of such properties and their evolution with gradual variation of surfactant molecular structure. To exemplify this, an extensive database has been constituted for amphiphilic physicochemical properties of sugar-based surfactants. Four important properties characterizing this family of surfactants were selected: CMC, Tk, Yeq, and pC20. For the three first properties, data concerning approximately 300 molecules were found. This data collection can be used to : Quickly find useful data characterizing aqueous solutions of sugar-based surfactants ; Quickly evaluate if experimental data are missing ; Establish predictive models, including Quantitative Structure-Property Relationship (QSPR) models. A literature review on existing QSPR models for surfactants properties showed that only 10 models, concerning CMC, are relevant to sugar-based surfactants. The most statistically significant model [2] was tested for an extensive set of 271 sugar based surfactants. The results suggest that there is still room for improvement by focusing on particular families and using more extensive databases. Work is currently in progress in our laboratories to develop such models. This work was performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique - ITE) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investment for the Future (“Investissements d’Avenir”). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Topics
  • impedance spectroscopy
  • surface
  • surfactant