People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rotureau, Patricia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2019Estimating the adsorption efficiency of sugar-based surfactants from QSPR modelscitations
- 2017Conformations of n-alkyl-α/β-D-glucopyranoside surfactants : Impact on molecular propertiescitations
- 2016Predictive models for amphiphilic properties of sugar-based surfactants
- 2015How to use QSPR type approaches to predict the properties of green chemicals
- 2015Data analysis of sugar-based surfactant properties : towards quantitative structure property relationships
- 2015Mixture descriptors toward the development of Quantitative Structure-Property Relationship models for the flash points of organic mixturescitations
- 2014Développement de modèles QSPR validés pour la prédiction de la stabilité thermique des peroxydes organiques
- 2013Predicting the physico-chemical properties of chemicals based on QSPR models
- 2013QSPR prediction of physico-chemical properties for REACHcitations
- 2013Prediction of thermal properties of organic peroxides using QSPR models
- 2012Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compoundscitations
- 2012Development of validated QSPR models for impact sensitivity of nitroaliphatic compoundscitations
- 2011Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanismscitations
- 2010Excited state properties from ground state DFT descriptors : A QSPR approach for dyescitations
- 2010QSPR modeling of thermal stability of nitroaromatic compounds : DFT vs AM1 calculated descriptorscitations
- 2010Predicting explosibility properties of chemicals from quantitative structure-property relationshipscitations
- 2009On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculationscitations
- 2009Predicting explosibility properties of chemicals from quantitative structure-property relationships
- 2008Vers la prédiction des propriétés d’explosibilité des substances chimiques par les outils de la chimie quantique et les méthodes statistiques QSPR
- 2008Quantitative structure-property relationship studies for predicting explosibility of nitroaromatic compounds
Places of action
Organizations | Location | People |
---|
conferencepaper
Quantitative structure-property relationship studies for predicting explosibility of nitroaromatic compounds
Abstract
The new European regulation of chemicals named REACH (for "Registration, Evaluation and Authorization of CHemicals", published by the European Commission in December 2006) implies that a tremendous number of substances (up to 30000) may require a new assessment of hazardous properties. Therefore, there is a growing interest in evaluating capabilities of predictive methods for assessing hazardous properties of chemical substances as a screening process. If Quantitative Structure-Property Relationship (QSPR) type methods have been up to now mainly devoted to screening toxic properties, their use to establish relationships between the explosibility of dangerous substances and structural, energetic or physicochemical descriptors could lead to new perspectives. This contribution focuses on the case of a series of nitroaromatic compounds, which are all expected to present more or less severe explosive properties due to the presence of the nitro group. In particular, this paper shows that a multilinear regression model links correctly adequate molecular descriptors of nitroaromatic compounds with thermal stability (taken as a macroscopic property related to explosibility). The descriptors are mostly obtained by ab initio quantum chemical calculations. Moreover, we present a detailed theoretical investigation on the decomposition pathways of substituted nitrobenzenes using quantum chemical methods that provide pertinent information for the use of descriptors in relation with energetic aspects to access to more robust QSPR models