Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Flor, Silvia De La

  • Google
  • 3
  • 12
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloycitations
  • 2022Tuning the tribological performance of Cu50Zr50 through microalloyingcitations
  • 2020Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol20citations

Places of action

Chart of shared publication
Nutter, John
2 / 11 shared
Birkett, Martin
1 / 23 shared
Unthank, Matthew
1 / 4 shared
Sanchez, Sergio Gonzalez
1 / 9 shared
Younes, Abdurauf
2 / 11 shared
Clark, Stewart
2 / 3 shared
Watson, Joseph
1 / 2 shared
González, S.
1 / 16 shared
Guzmán, Dailyn
1 / 2 shared
Serra, Angels
1 / 4 shared
Santiago Abraira, David
1 / 1 shared
Ferrando, Francesc
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Nutter, John
  • Birkett, Martin
  • Unthank, Matthew
  • Sanchez, Sergio Gonzalez
  • Younes, Abdurauf
  • Clark, Stewart
  • Watson, Joseph
  • González, S.
  • Guzmán, Dailyn
  • Serra, Angels
  • Santiago Abraira, David
  • Ferrando, Francesc
OrganizationsLocationPeople

document

Tuning the tribological performance of Cu50Zr50 through microalloying

  • Nutter, John
  • Flor, Silvia De La
  • Younes, Abdurauf
  • Clark, Stewart
  • González, S.
Abstract

It was observed from pin-on-disc tests that microalloying with Fe and/or Mn is an effective method to enhance the wear resistance of Cu50Zr50 at. % shape memory alloy (SMA) because these elements can promote the martensitic transformation when they are present in certain concentrations.The microstructure of Cu50Zr50 at. % SMA mostly consists of B2 CuZr and partial replacement of Cu by up to 1 at. % Fe and Mn is of interest because they can decrease the stacking fault energy (SFE) of B2 CuZr according to density functional based calculations. A decrease in the SFE means a more effective martensitic transformation. When Cu is partially replaced by 0.5 at. % Fe, there is a decrease of the SFE, from 0.36 J/m2 to 0.26 J/m2, and therefore the highest martensitic transformation upon wear testing is achieved. This results in the highest wear resistance of the Cu50Zr50 at. % SMA, especially for 15 N load, for which the mass loss decreases from 0.0177 g to 0.0123 g. These results are consistent with the low roughness, 0.1870.23 μm, and coefficient of friction, 0.48, obtained when Cu is partially replaced by Fe compared to the values for Cu50Zr50, 0.55 and 0.4510.59 μm, respectively. Observation of the worn surfaces suggest that the more wear resistant alloy is the one containing 0.5 at. % Fe, since the abrasive grooves are the swallowest while the alloy with 0.5 at. % Mn is the second more wear resistant, for which the surface roughness is 0.3010.38 μm. Sliding wear tests on SS304 counterbody indicate that the wear mechanisms are abrasion, adhesion and delamination.

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • wear resistance
  • wear test
  • stacking fault
  • coefficient of friction
  • supercritical fluid extraction