People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sol, Hugo
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2016The Ultrasonic Polar Scan for Composite Characterization and Damage Assessment: Past, Present and Futurecitations
- 2015Ultrasonic polar scan imaging of fatigued fiber reinforced composites
- 2015The quasi-harmonic ultrasonic polar scan for material characterization: Experiment and numerical modelingcitations
- 2015Calibration and correction procedure for quantitative out-of-plane shearographycitations
- 2015An ultrasonic strain gauge
- 2014Damage Signature of Fatigued Fabric Reinforced Plastics in the Pulsed Ultrasonic Polar Scan
- 2014Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scancitations
- 2014Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scan
- 2014A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain field
- 2014A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain fieldcitations
- 2014An Ultrasonic Strain Gauge
- 2014Pitfalls in the experimental recording of ultrasonic (backscatter) polar scans for material characterizationcitations
- 2014Extraction of bulk wave characteristics from a pulsed ultrasonic polar scancitations
- 2014Ultrasonic Characterizaion of Subsurface 2D Corrugationcitations
- 2014Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan
- 2014Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scancitations
- 2014The pulsed ultrasonic backscatter polar scan and its applications for NDT and material characterization
- 2014Errors in shearography measurements due to the creep of the PZT shearing actuatorcitations
- 2014Identification of the plastic behavior of aluminum plates under free air explosions using inverse methods and full-field measurements
- 2012'Gradient' polar scan technique for material characterizationcitations
- 2012Polar scan technique for material characterization and identification of new operating regimes
- 2010Reproducing the experimental pull-out and shear strength of clinched sheet metal connections using FEAcitations
- 2010Resonant-based identification of the Poisson's ratio of orthotropic materials
- 2010Determination of the flow stress and contact friction of sheet metal in a multi-layered upsetting test
- 2010Resonance Fatigue Testing of Test Beams Made of Composite Material
- 2009A reference specimen for permeability measurements of fibrous reinforcements for RTM
- 2008Identification of material parameters to predict Single Point Incremental Forming forcescitations
- 2007Experimental and theoretical study of the damage onset in biaxial cruciform specimens under static and hysteresis loading
- 2006Stereolithographic Specimen to Calibrate Permeability Measurements for RTM Flow Simulations
- 2004Study of nesting induced scatter of permeability values in layered reinforcement fabrics
- 2002New set-up for measurement of permeability properties of fibrous reinforcements for RTM
Places of action
Organizations | Location | People |
---|
article
Identification of the plastic behavior of aluminum plates under free air explosions using inverse methods and full-field measurements
Abstract
This article describes an inverse method for the identification of the plastic behavior of aluminum plates subjected to sudden blast loads. The method uses full-field optical measurements taken during the first milliseconds of a free air explosion and the finite element method for the numerical prediction of the blast response. The identification is based on a damped least-squares solution according to the Levenberg-Marquardt formulation. Three different rate-dependent plasticity models are examined. First, a combined model based on linear strain hardening and the strain rate term of the Cowper-Symonds model, secondly, the Johnson-Cook model and finally, a combined model based on a bi-exponential relation for the strain hardening term and the strain rate term of the Cowper-Symonds model. A validation of the method and its sensitivity to measurement uncertainties is first provided according to virtual measurements generated with the finite element method. Next, the plastic behavior of aluminum is identified using measurements from real free air explosions obtained from a controlled detonation of C4. The results show that inverse methods can be successfully applied for the identification of the plastic behavior of metals subjected to blast waves. In addition, the material parameters identified with inverse methods enable the numerical prediction of the material's response with increased accuracy.