People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abeele, Koen Van Den
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Ultrasonic polar scan imaging of fatigued fiber reinforced composites
- 2015An ultrasonic strain gauge
- 2014Damage Signature of Fatigued Fabric Reinforced Plastics in the Pulsed Ultrasonic Polar Scan
- 2014Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scan
- 2014A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain field
- 2014Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan
- 2014The pulsed ultrasonic backscatter polar scan and its applications for NDT and material characterization
Places of action
Organizations | Location | People |
---|
article
A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain field
Abstract
A novel method is introduced for the measurement of a 3D strain field by exploiting the interaction between ultrasound waves and geometrical characteristics of the insonified specimen. First, the response of obliquely incident harmonic waves to a deterministic surface roughness is utilized. Analysis of backscattered amplitudes in Bragg diffraction geometry then yields a measure for the in-plane strain field by mapping any shift in angular dependency. Secondly, the analysis of the reflection characteristics of normal incident pulsed waves in frequency domain provides a measure of the out-of-plane normal strain field component, simply by tracking any change in the stimulation condition for a thickness resonance. As such, the developed ultrasonic strain gauge yields an absolute, contactless and single-sided mapping of a local 3D strain field, in which both sample preparation and alignment procedure are needless. Results are presented for cold-rolled DC06 steel samples onto which skin passing of the work rolls is applied. The samples have been mechanically loaded, introducing plastic strain levels ranging from 2 % up to 35 %. The ultrasonically measured strains have been validated with various other strain measurement techniques, including manual micrometer, longitudinal and transverse mechanical extensometer and optical mono- and stereovision digital image correlation. Good agreement has been obtained between the ultrasonically determined strain values and the results of the conventional methods. As the ultrasonic strain gauge provides all three normal strain field components, it has been employed for the extraction of Lankford ratios at different applied longitudinal plastic strain levels, revealing a strain dependent plastic anisotropy of the investigated DC06 steel sheet.