People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zastavnik, Filip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Local bending stiffness identification of beams using simultaneous Fourier-series fitting and shearography (vol 443, pg 764, 2019)
- 2019Local bending stiffness identification of beams using simultaneous Fourier-series fitting and shearographycitations
- 2016The Ultrasonic Polar Scan for Composite Characterization and Damage Assessment: Past, Present and Futurecitations
- 2015Ultrasonic polar scan imaging of fatigued fiber reinforced composites
- 2015The quasi-harmonic ultrasonic polar scan for material characterization: Experiment and numerical modelingcitations
- 2015Calibration and correction procedure for quantitative out-of-plane shearographycitations
- 2015An ultrasonic strain gauge
- 2014Damage Signature of Fatigued Fabric Reinforced Plastics in the Pulsed Ultrasonic Polar Scan
- 2014Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scancitations
- 2014Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scan
- 2014A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain field
- 2014A novel ultrasonic strain gauge for single-sided measurement of a local 3D strain fieldcitations
- 2014An Ultrasonic Strain Gauge
- 2014Pitfalls in the experimental recording of ultrasonic (backscatter) polar scans for material characterizationcitations
- 2014Extraction of bulk wave characteristics from a pulsed ultrasonic polar scancitations
- 2014Ultrasonic Characterizaion of Subsurface 2D Corrugationcitations
- 2014Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan
- 2014Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scancitations
- 2014The pulsed ultrasonic backscatter polar scan and its applications for NDT and material characterization
- 2014Errors in shearography measurements due to the creep of the PZT shearing actuatorcitations
- 2012'Gradient' polar scan technique for material characterizationcitations
- 2012Polar scan technique for material characterization and identification of new operating regimes
Places of action
Organizations | Location | People |
---|
article
Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scan
Abstract
In this paper, the hybrid compliance-stiffness matrix method for simulating wave propagation in (delaminated) multilayered media with viscoelastic anisotropy has been confronted with high-quality amplitude and phase experiments on delaminated composites, obtained using the ultrasonic polar scan setup (UPS) in transmission by considering harmonic as well as pulsed ultrasound. Results are presented for multiple thin carbon/epoxy laminates with an artificial edge delamination induced by a foil insert, showing a good agreement between experimental recording and numerical modeling. The obtained results further reveal the feasibility of the harmonic UPS to detect and even locate the depth-position of multiple delaminations in fiber reinforced composites. Considering that the harmonic UPS method does not rely on the detection of different echoes like the classical C-scan, but rather expounds the conditions for efficient stimulation of guided waves in the solid, the method is found to be highly suited for inspecting thin composite materials for the presence of delaminations.