People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harizi, Walid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024A variable kinematic multi-field model for lamb wave propagation analysis in smart composite panelscitations
- 2024Electrical capacitance and mechanical performances of embedded piezo-polymer transducers in polymer-matrix composites under monotonic tensile tests
- 2024A Global-Local Modelling Approach for Wave Propagation, SHM and Damage Detection in Reinforced Panels Using Integrated Piezoelectric Sensorscitations
- 2023STRUCTURAL HEALTH MONITORING (SHM) OF SMART SANDWICH COMPOSITES DURING THREE-POINT BENDING TESTScitations
- 2023Integration method of at least one piezoelectric transducer within polymer and composite parts manufactured using 3d printing techniques
- 2023ADVANCED MULTIFIELD MODELS FOR WAVE PROPAGATION ANALYSIS IN SMART COMPOSITE PANELS
- 2022Understanding the damage mechanisms in 3D layer-to-layer woven composites from thermal and acoustic measurementscitations
- 2022Understanding the damage mechanisms in 3D layer-to-layer woven composites from thermal and acoustic measurementscitations
- 2021Evaluation of the crosslinking steps of an unsaturated polyester resin during the infusion process of polymer-matrix composites using embedded PZT transducercitations
- 2021Damage monitoring of a polymer-matrix composite (PMC) subjected to 4-point bending tests using an embedded piezoceramic transducer
- 2020Mechanical Characterization of Composite GRC Under Different Solicitations
- 2019On the use of the electrical resistance for rapid determination of the endurance limit of carbon fibers/PPSU thermoplastic composites during the self-heating tests
- 2019Infusion process monitoring of polymer-matrix composite using an in-situ piezoelectric sensor
- 2019On the structural health monitoring of carbon fiber reinforced nanofilled matrix by the resistance variation method
- 2019REAL-TIME MONITORING OF THE INFUSION PROCESS OF A POLYMER-MATRIX COMPOSITE WITH AN EMBEDDED PIEZOELECTRIC TRANSDUCER.
- 2019STRUCTURAL HEALTH MONITORING OF SMART POLYMER-MATRIX COMPOSITE DURING CYCLIC LOADING USING AN IN-SITU PIEZOELECTRIC SENSOR.
- 2019REAL-TIME MONITORING OF THE INFUSION PROCESS OF A POLYMER-MATRIX COMPOSITE WITH AN EMBEDDED PIEZOELECTRIC TRANSDUCER
- 2015Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic mapscitations
- 2014Mechanical damage assessment of polymer-matrix composites using active infrared thermographycitations
- 2012Damage characterization of polymer-matrix composites using a non-destructive multi-technique approach
Places of action
Organizations | Location | People |
---|
document
STRUCTURAL HEALTH MONITORING OF SMART POLYMER-MATRIX COMPOSITE DURING CYCLIC LOADING USING AN IN-SITU PIEZOELECTRIC SENSOR.
Abstract
This article investigates the Structural Health Monitoring (SHM) potential of a piezoceramic (PZT) disk embedded into a Polymer-Matrix Composite (PMC) material submitted to a cyclic loading test. To do so, several samples were extracted from a PMC (glass fiber/polyester resin) plate manufactured using the Liquid Resin Infusion (LRI) technique, each one embedded with a connected PZT transducer. Cyclic (loading-bearing-unloading) incremental tensile tests were then performed on these embedded samples until failure. The electrical capacitance signature of the PZT was acquired during the whole test using a multimeter, and all samples were equipped with a multi-instrumentation system including two Non-Destructive Testing (NDT) devices: two Acoustic Emission (AE) sensors and Stereo-Digital Image Correlation (S-DIC) cameras on both face and thickness of each specimen. Results showed that the in-situ PZT capacitance signature is able to follow well the mechanical loading, and allows to give information on the start and progression of the damage happening inside the tested material when comparing the capacitance signal with the two other NDT signatures. The PZT can thus be considered as an efficient NDT device for real-time SHM of PMC structures.