People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valente, Emilie Hørdum
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Wire arc additive manufacturing of thin and thick walls made of duplex stainless steelcitations
- 2022Powder-based additive manufacturing of high-nitrogen stainless steels and austenitic nickel alloys
- 2022Powder-based additive manufacturing of high-nitrogen stainless steels and austenitic nickel alloys
- 2021In-situ interstitial alloying during laser powder bed fusion of AISI 316 for superior corrosion resistancecitations
- 2021In-situ interstitial alloying during laser powder bed fusion of AISI 316 for superior corrosion resistancecitations
- 2021Microstructure Optimization of AM metals through heat treatment and interstitial alloying
- 2021Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructurescitations
- 2020Gaseous surface hardening of Ti-6Al-4V fabricated by selective laser meltingcitations
- 2019Effect of scanning strategy during selective laser melting on surface topography, porosity, and microstructure of additively manufactured Ti-6Al-4Vcitations
- 2019Effect of scanning strategy during selective laser melting on surface topography, porosity, and microstructure of additively manufactured Ti-6Al-4Vcitations
- 2019Influence of atmosphere on microstructure and nitrogen content in AISI 316L fabricated by laser‐based powder bed fusion
- 2019Influence of atmosphere on microstructure and nitrogen content in AISI 316L fabricated by laser‐based powder bed fusion
- 2019The Effect of Heat Treatment and Surface Hardening of 3D Printed Austenitic Stainless Steel AISI316l on Corrosion and Wear Properties
- 2019The Effect of Heat Treatment and Surface Hardening of 3D Printed Austenitic Stainless Steel AISI316l on Corrosion and Wear Properties
- 2019A method for identification and quantification of thermal lensing in powder bed fusion
- 2019Multi-material additive manufacturing of steels using laser powder bed fusion
- 2018High-temperature solution nitriding and low-temperature surface nitriding of 3D printed stainless steel
- 2018Modelling of the microstructural evolution of Ti6Al4V parts produced by selective laser melting during heat treatment
Places of action
Organizations | Location | People |
---|
document
Influence of atmosphere on microstructure and nitrogen content in AISI 316L fabricated by laser‐based powder bed fusion
Abstract
The present work focuses on the influence of the composition of the protective gas (argon or nitrogen) used in laser‐based powder bed fusion (L‐PBF) on the nitrogen content, microstructure and hardness of AISI 316L austenitic stainless steel. L‐PBF of AISI 316L powder using Ar gas resulted in loss of nitrogen in the final part. On the other hand, L‐PBF using N<sub>2</sub> gas resulted inan increase in nitrogen content in the final part, showing that nitrogen is absorbed during L‐PBF manufacturing in N<sub>2</sub> gas. The nitrogen absorption implies that the build part is actually AISI 316LN rather than AISI 316L.The microstructures of 316L specimens manufactured in both atmospheres exhibited highly elongated γ‐austenite grains, with acellular structure. The hardness of the part manufactured in N<sub>2</sub> gas was systematically higher than the part manufactured in Ar. For the part manufactured in Ar, a clear gradual decrease in hardness was observed with increasing distance from the build plate, whilefor the N<sub>2</sub> manufactured part this hardness decrease is first observed at some distance from the build plate.For the part manufactured in Ar, a larger variation in the measured nitrogen content was observed. Moreover, a systematically lower and position dependent micro‐hardness and inhomogeneous etching response of this specimen indicate an inhomogeneous microstructure in the build.The results demonstrate that the nitrogen content of L‐PBF manufactured AISI 316L depends on the composition of the gas atmosphere used in the chamber. It is discussed qualitatively how desorption and absorption of nitrogen from the applied atmosphere play a role on the resulting composition and microstructure of the build part.