Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pajola, Maurizio

  • Google
  • 8
  • 142
  • 520

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024DART Impact Ejecta Plume Evolution: Implications for Dimorphos4citations
  • 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary systemcitations
  • 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary systemcitations
  • 2021Influence of the body composition on the evolution of ejecta in the Didymos-Dimorphos binary systemcitations
  • 2020Mini-Craters on (101955) Bennu's Boulders: Deriving the Impact Strength of C-Type Objectscitations
  • 2020Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders90citations
  • 2019Radar evidence of subglacial liquid water on Marscitations
  • 2018Radar evidence of subglacial liquid water on Mars426citations

Places of action

Chart of shared publication
Rizk, B.
2 / 3 shared
Michel, P.
2 / 4 shared
Delbo, M.
2 / 6 shared
Bierhaus, E. B.
2 / 2 shared
Lauretta, D. S.
2 / 2 shared
Bennett, C. A.
2 / 2 shared
Walsh, K. J.
2 / 4 shared
Daly, M. G.
2 / 3 shared
Ballouz, R. -L.
2 / 2 shared
Connolly, H. C.
2 / 2 shared
Golish, D. R.
2 / 2 shared
Daly, R. T.
2 / 2 shared
Molaro, J. L.
2 / 2 shared
Avdellidou, C.
2 / 2 shared
Asphaug, E.
2 / 2 shared
Jawin, E. R.
2 / 2 shared
Dellagiustina, D. N.
2 / 2 shared
Bottke, W. F.
2 / 2 shared
Barnouin, O. S.
2 / 3 shared
Trang, D.
2 / 2 shared
Schwartz, S. R.
2 / 5 shared
Al Asad, M.
1 / 1 shared
Cicchetti, Andrea
1 / 2 shared
Cosciotti, Barbara
1 / 1 shared
Coradini, Marcello
1 / 1 shared
Flamini, Enrico
1 / 1 shared
Di Paolo, Federico
1 / 1 shared
Cartacci, Marco
1 / 3 shared
Frigeri, Alessandro
1 / 7 shared
Lauro, Sebastian E.
1 / 1 shared
Giuppi, Stefano
1 / 4 shared
Orosei, Roberto
1 / 2 shared
Cassenti, Francesco
1 / 1 shared
Mattei, Elisabetta
1 / 3 shared
Noschese, Raffaella
1 / 5 shared
Masdea, Arturo
1 / 1 shared
Martufi, Riccardo
1 / 1 shared
Soldovieri, Francesco
1 / 5 shared
Nenna, Carlo
1 / 1 shared
Pettinelli, Elena
1 / 3 shared
Mitri, Giuseppe
1 / 1 shared
Pettinelli, E.
1 / 3 shared
Lauro, S. E.
1 / 1 shared
Martufi, R.
1 / 1 shared
Seu, R.
1 / 2 shared
Frigeri, A.
1 / 2 shared
Giuppi, S.
1 / 1 shared
Cassenti, F.
1 / 1 shared
Soldovieri, F.
1 / 2 shared
Orosei, R.
1 / 4 shared
Cosciotti, B.
1 / 1 shared
Mitri, G.
1 / 2 shared
Coradini, M.
1 / 1 shared
Di Paolo, F.
1 / 1 shared
Flamini, E.
1 / 2 shared
Mattei, E.
1 / 2 shared
Cartacci, M.
1 / 3 shared
Cicchetti, A.
1 / 4 shared
Noschese, R.
1 / 1 shared
Restano, M.
1 / 2 shared
Masdea, A.
1 / 2 shared
Nenna, C.
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2018

Co-Authors (by relevance)

  • Rizk, B.
  • Michel, P.
  • Delbo, M.
  • Bierhaus, E. B.
  • Lauretta, D. S.
  • Bennett, C. A.
  • Walsh, K. J.
  • Daly, M. G.
  • Ballouz, R. -L.
  • Connolly, H. C.
  • Golish, D. R.
  • Daly, R. T.
  • Molaro, J. L.
  • Avdellidou, C.
  • Asphaug, E.
  • Jawin, E. R.
  • Dellagiustina, D. N.
  • Bottke, W. F.
  • Barnouin, O. S.
  • Trang, D.
  • Schwartz, S. R.
  • Al Asad, M.
  • Cicchetti, Andrea
  • Cosciotti, Barbara
  • Coradini, Marcello
  • Flamini, Enrico
  • Di Paolo, Federico
  • Cartacci, Marco
  • Frigeri, Alessandro
  • Lauro, Sebastian E.
  • Giuppi, Stefano
  • Orosei, Roberto
  • Cassenti, Francesco
  • Mattei, Elisabetta
  • Noschese, Raffaella
  • Masdea, Arturo
  • Martufi, Riccardo
  • Soldovieri, Francesco
  • Nenna, Carlo
  • Pettinelli, Elena
  • Mitri, Giuseppe
  • Pettinelli, E.
  • Lauro, S. E.
  • Martufi, R.
  • Seu, R.
  • Frigeri, A.
  • Giuppi, S.
  • Cassenti, F.
  • Soldovieri, F.
  • Orosei, R.
  • Cosciotti, B.
  • Mitri, G.
  • Coradini, M.
  • Di Paolo, F.
  • Flamini, E.
  • Mattei, E.
  • Cartacci, M.
  • Cicchetti, A.
  • Noschese, R.
  • Restano, M.
  • Masdea, A.
  • Nenna, C.
OrganizationsLocationPeople

document

Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system

  • Ballouz, Ronald-Louis
  • Pajola, Maurizio
  • Richardson, Derek
  • Team, The Dart Investigation
  • Hartzell, Christine
  • Ernst, Carolyn
  • Scheeres, Daniel
  • Michel, Patrick
  • Raducan, Sabina
  • Rivkin, Andrew
  • Mcmahon, Jay
  • Lucchetti, Alice
  • Schwartz, Stephen
  • Barnouin, Olivier
  • Barbee, Brent
  • Agrusa, Harrison
  • Jacobson, Seth
  • Hirabayashi, Masatoshi
  • Meyer, Alex
  • Daly, Ronald Terik
  • Campo Bagatin, Adriano
  • Zhang, Yun
  • Chabot, Nancy
  • Cheng, Andrew
  • Nakano, Ryota
  • Cuk, Matija
  • Palmer, Eric
  • Sanchez Lana, Diego
  • Ferrari, Fabio
  • Tusberti, Filippo
  • Soldini, Stefania
  • Jutzi, Martin
Abstract

Radar observations indicate that about 16% of near-Earth asteroids may be binary systems with likely fast-spinning spheroidal primaries [1]. The formation mechanism of such systems remains uncertain, although it may be linked to rotation-driven structural reconfiguration if these asteroids are rubble piles [2]. On 26 September, 2022, the NASA Double Asteroid Redirection Test (DART) mission successfully demonstrated the use of kinetic impact for planetary defense by colliding with Dimorphos, the moon of the Didymos binary system [3], altering its orbit around the primary Didymos [4, 5]. The DRACO camera onboard the DART spacecraft has provided the first close-up images of the asteroids [3], revealing their physical characteristics that offer valuable insight into the formation and evolution of such binary systems. In this study, assuming that the primary Didymos is a rubble pile, we employ soft-sphere discrete element modeling to investigate the structural and rotational evolution of Didymos, which allows us to constrain the binary formation scenario. First, by simulating the structural evolution of Didymos given YORP-induced rotational acceleration as a spin-up mechanism, we derived a range of material and structural properties necessary for maintaining its structural stability at the current spin period of 2.26 hr. Our results indicate that Didymos does not require cohesive strength if its constituent granular material has an angle of friction ≥ ~40 deg and its bulk density is ≥ ~2.7 g/cc. Considering a typical friction angle range of dry granular material, e.g., 29–40 deg, a cohesive strength of ~19–33 Pa would be needed for the reported nominal bulk density, i.e., 2.4 g/cc [3]. Then, we tested the structural and dynamical evolution of the derived Didymos models under various conditions, including rotational acceleration and small-scale impact bombardment. Our findings suggest that moon formation via surface mass shedding is more plausible when the body has a relatively high friction angle or a denser interior. Finally, we characterized the morphology and dynamics of the Didymos model and resulting particle systems (if produced) and compared our findings with the geophysical characteristics revealed by the DRACO images. Based on these results, we discuss the possible formation mechanisms for Dimorphos along with the implications for the upcoming Hera mission.References: [1] Margot et al., Science 296, 1445–1448 (2002). [2] Walsh & Jacobson, in Asteroids IV (2015). [3] Daly et al., Nature, in press (2023). [4] Thomas et al., Nature, in press (2023). [5] Cheng et al., Nature, in press (2023)....

Topics
  • density
  • impedance spectroscopy
  • morphology
  • surface
  • strength
  • spinning