People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schulz, Uwe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Single-stack multilayer infrared mirrors with selectable higher-order interference peaks
- 2024Performance of EB-PVD Y-based EBC System under High Temperature Water Vapor Environment
- 2023Single and multi-component REDS systems for TEBC application: Synthesis and study of high temperature interaction with CMAS
- 2023Novel magnetron sputtered yttrium-silicon-iron oxide as CMAS resistant top coat material for environmental barrier coatingscitations
- 2022Interface reactions of magnetron sputtered Si-based dual layer coating systems as oxidation protection for Mo-Si-Ti alloyscitations
- 2020Novel magnetron sputtered ceramic YSiFe oxide as CMAS-resistant coatings for environmental barrier coatings.
- 2019Investigation of CMAS resistance of sacrificial suspension sprayed alumina topcoats on EB-PVD 7YSZ layerscitations
- 2019Investigation of CMAS Resistance of Sacrificial Suspension Sprayed Alumina Topcoats on EB-PVD 7YSZ Layerscitations
- 2014Erosion resistance of electroplated nickel coatings on carbon-fibre reinforced plasticscitations
- 2010Oxidation and fatigue behaviour of gamma-TiAl coated with HIPIMS CrAlYN/CrN nanoscale multilayer coatings and EB-PVD thermal barrier coatingscitations
- 2008Optimizing of the reflectivity of air plasma sprayed ceramic thermal barrier coatings
Places of action
Organizations | Location | People |
---|
document
Single and multi-component REDS systems for TEBC application: Synthesis and study of high temperature interaction with CMAS
Abstract
Multi-component rare earth disilicates RE2Si2O7 (REDS) are considered as promising materials to be used as thermal environmental barrier coatings (TEBCs) to protect ceramic matrix composites (CMCs) against environmental degradation. The combination of multiple cations in a single phase is expected to decrease the overall thermal conductivity of the material. In addition, they can also increase the phase stability at high temperatures, toughness, inertness to water vapor attack, and stability against molten deposits (CMAS) attack. In this work, single and multi-component rare earth disilicates have been successfully synthesized using a novel and quick synthesis method through solid-state reaction. The main goal of this study is to understand the thermochemical interactions of single cation (Y, Yb, Er, Ho, Lu, and Sc) disilicates and multiple cation disilicates e.g. (Y,Yb)2Si2O7, (Y,Yb,Er)2Si2O7, (Y,Yb,Er,Ho)2Si2O7 with CMAS at 1350 and 1400°C for 1h. Results have shown that the synthesized powders exhibit formation of a single monoclinic phase (β or γ types) both in single and multi-component disilicate systems. The CMAS interaction resulted in formation of REDS reprecipitates (Yb, Lu, Sc), apatite (Er, Ho, Y), and diopside (Sc) as reactive crystallization products. Finally, the multiple cation effect on the formation of the reaction products will be discussed.