Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grabias, Agnieszka

  • Google
  • 13
  • 25
  • 93

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2021Phase Structure Evolution of the Fe-Al Arc-Sprayed Coating Stimulated by Annealing11citations
  • 2019Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol.%B powders6citations
  • 2012Study of magnetic phases in mechanically alloyed Fe <inf>50</inf> Zn <inf>50</inf> powder2citations
  • 2011Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloys14citations
  • 2010Structural and magnetic properties of the ball milled Fe <inf>56</inf> Pt <inf>24</inf> B <inf>20</inf> alloy1citations
  • 2010Novel amorphous Fe-Zr-Si(Cu) boron-free alloys1citations
  • 2010Structural transformations and magnetic properties of Fe <inf>60</inf> Pt <inf>15</inf> B <inf>25</inf> and Fe <inf>60</inf> Pt <inf>25</inf> B <inf>15</inf> nanocomposite alloys8citations
  • 2009Magnetic properties of the Fe48.75 Pt 26.25 B 25 nanostructured alloy4citations
  • 2008Structure and magnetic properties of the Zr <inf>30</inf> Fe <inf>35</inf> Ni <inf>35</inf> alloy formed by mechanical alloyingcitations
  • 2007Crystallization behaviour of the Fe <inf>60</inf> Co <inf>10</inf> Ni <inf>10</inf> Zr <inf>7</inf> B <inf>13</inf> metallic glass7citations
  • 2007Mössbauer study on amorphous and nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloys13citations
  • 2007Evolution of structure in austenitic steel powders during ball milling and subsequent sintering26citations
  • 2004Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sinteringcitations

Places of action

Chart of shared publication
Skowrońska, Beata
1 / 9 shared
Piątkowska, Anna
1 / 3 shared
Siwek, Piotr
1 / 1 shared
Chmielewski, Tomasz M.
1 / 31 shared
Chmielewski, Marcin
1 / 17 shared
Ferenc, Jarosław
2 / 11 shared
Kulik, Tadeusz
3 / 39 shared
Krasnowski, Marek
1 / 9 shared
Pękała, Marek
4 / 9 shared
Oleszak, Dariusz
8 / 55 shared
Kowalczyk, Maciej
6 / 30 shared
Kopcewicz, Michał
7 / 8 shared
Latuch, Jerzy
6 / 15 shared
Pȩkaa, M.
1 / 1 shared
Pekałla, M.
1 / 1 shared
Erenc-Sędziak, Tatiana
1 / 3 shared
Xu, B. S.
1 / 2 shared
Liang, Xiu Bing
1 / 1 shared
Świderska-Środa, Anna
1 / 1 shared
Rosiński, Marcin
1 / 11 shared
Kurzydłowski, Krzysztof
1 / 114 shared
Kazior, Jan
1 / 4 shared
Szymańska, Agnieszka
1 / 1 shared
Michalski, Andrzej
1 / 13 shared
Sikorski, Krzysztof
1 / 5 shared
Chart of publication period
2021
2019
2012
2011
2010
2009
2008
2007
2004

Co-Authors (by relevance)

  • Skowrońska, Beata
  • Piątkowska, Anna
  • Siwek, Piotr
  • Chmielewski, Tomasz M.
  • Chmielewski, Marcin
  • Ferenc, Jarosław
  • Kulik, Tadeusz
  • Krasnowski, Marek
  • Pękała, Marek
  • Oleszak, Dariusz
  • Kowalczyk, Maciej
  • Kopcewicz, Michał
  • Latuch, Jerzy
  • Pȩkaa, M.
  • Pekałla, M.
  • Erenc-Sędziak, Tatiana
  • Xu, B. S.
  • Liang, Xiu Bing
  • Świderska-Środa, Anna
  • Rosiński, Marcin
  • Kurzydłowski, Krzysztof
  • Kazior, Jan
  • Szymańska, Agnieszka
  • Michalski, Andrzej
  • Sikorski, Krzysztof
OrganizationsLocationPeople

article

Phase transformations in ball milled AISI 316L stainless steel powder and the microstructure of the steel obtained by its sintering

  • Rosiński, Marcin
  • Kurzydłowski, Krzysztof
  • Kazior, Jan
  • Szymańska, Agnieszka
  • Grabias, Agnieszka
  • Oleszak, Dariusz
  • Michalski, Andrzej
  • Sikorski, Krzysztof
Abstract

<p>The paper shows the influence of the 100 hours ball milling process of commercial AISI 316L stainless steel powder and the mixture of powders of its components eg. (Fe, Cr, Ni...) on the structure on the milling products. The impulse plasma sintering process of the powders has also been carried out. The results of X-ray diffractometry showed that ball milling in both cases leads to obtaining nanocrystalline two phase (austenitic-martensitic) stainless steel powders of the average size of crystallite about 40 nm. The fraction of martensite in the milled powders was estimated from Mössbauer spectra and their microstructure was observed on scanning electron microscope. The milled powders were sintered by impulse plasma sintering. The structure of the sintered material was characterized by X-ray diffractometry and light microscopy. It was found that impulse plasma sintering of nanocrystalline powders obtained by ball milling of pure components enable to obtain a nanocrystalline austenitic stainless steel of very low porosity. © 2004 Advanced Study Center Co. Ltd.</p>

Topics
  • stainless steel
  • phase
  • milling
  • porosity
  • ball milling
  • ball milling
  • sintering
  • microscopy