People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brinek, Adam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy
- 2022Correlative Tomography for micro- and nano- scale defects reduction analysis in Additive Manufactured healable aluminium alloy
- 2022Characterization of a newly developed liquid assisted healable Al alloy produced for Laser Powder Bed Fusion (LPBF)
- 2021Correlative Tomography for micro- and nano- scale porosity reduction analysis in Additive Manufactured healable aluminium alloy
Places of action
Organizations | Location | People |
---|
document
Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy
Abstract
Designing self-healing metals is challenging because it requires a driving force such as high temperature conditions to trigger the diffusion and/or local melting process of a healing agent. Proper understanding of healing mechanism, followed by the healing treatment optimization depends on accurate microstructural analysis, performed at the exact location of damage. Therefore, a correlative imaging is required to evidence the microstructure healing efficiency.