People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gheysen, Julie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023Phase Transformation-Induced Interfacial Debonding of Silica Inclusions in Ironcitations
- 2023Phase-field simulation of self-healing AlMg alloy
- 2023Development of a new healable aluminium alloy produced by Laser Powder Bed Fusion (LPBF) and improvement of its strength through strengthening element addition
- 2023Suppressing hydrogen blistering in a magnesium-rich healable laser powder bed fusion aluminum alloy analyzed by in-situ high resolution techniquescitations
- 2023Exceptional fatigue life and ductility of new liquid healing hot isostatic pressing especially tailored for additive manufactured aluminum alloyscitations
- 2023Exceptional fatigue life and ductility of new liquid healing hot isostatic pressing especially tailored for additive manufactured aluminum alloyscitations
- 2022Healing Damage in Friction Stir Processed Mg2Si reinforced Al alloy
- 2022Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy
- 2022Self-Healing in Metal-Based Systemscitations
- 2022Characterization of the Healability of Aluminium Alloys Produced by Laser Powder Bed Fusion (L-PBF) Using X-ray Nanoholotomography at Synchrotron (ESRF)
- 2022Design, development and characterisation of new healable aluminium alloys for laser powder bed fusion
- 2022Development of a new liquid assisted healable AlMg alloy produced for Laser Powder Bed Fusion (LPBF)
- 2022Correlative Tomography for micro- and nano- scale defects reduction analysis in Additive Manufactured healable aluminium alloy
- 2022Characterization of a newly developed liquid assisted healable Al alloy produced for Laser Powder Bed Fusion (LPBF)
- 2021Correlative Tomography for micro- and nano- scale porosity reduction analysis in Additive Manufactured healable aluminium alloy
- 2021Efficient optimization methodology for laser powder bed fusion parameters to manufacture dense parts validated on AlSi12 alloy
- 2021Efficient optimization methodology for laser powder bed fusion parameters to manufacture dense and mechanically sound parts validated on AlSi12 alloycitations
- 2021Hot cracking suppression by powder modification of an Al7075 alloy produced by laser powder bed fusion (L-PBF) and first insights in the improvement of its fatigue life
- 2020First insight in the development by L-PBF of healable aluminium alloys
- 2019First insight in the development of a healable aluminum alloy processed by SLM
Places of action
Organizations | Location | People |
---|
document
Development of a new liquid assisted healable AlMg alloy produced for Laser Powder Bed Fusion (LPBF)
Abstract
Aluminium alloys are widely used in aerospace and aeronautic industries because of their excellent strength-to-weight ratio. In these applications, overloads can occur, damage the part and lead to its replacement. In order to increase the part’s lifetime, a solution would be to use a material able to heal its damage and restore its continuity. The most advanced man-made self-healing materials are polymers. They are composed of encapsulated healing agents, which are released when a crack propagates, leading to the crack closure. Designing self-healing metallic materials is more challenging because of the slow diffusion of the healing agents at room temperature. The aim of this research is to develop a healable Al alloy produced for Laser Powder Bed Fusion (LPBF). To this end, elementary Al and Mg powders are mixed and the parts are manufactured by LPBF to produce a binary AlMg alloy composed of a low melting point magnesium rich phase dispersed in an aluminium matrix. Then, after damage of the material, a heat treatment triggers the melting of this low melting point phase, which can therefore flow to the free surfaces of the voids and heal them upon solidification. The composition was selected thanks to ThermoCalc and Rosenthal simulations in order to avoid hot tearing while optimising the percentage of low melting point phase. The LPBF parameters leading to homogeneous, dense and crack-free parts were investigated. The damage mechanism was highlighted using in-situ tensile tests. Finally, X-ray nano-holotomography experiments at ID16B beamline at the ESRF demonstrated the healing potential of the designed alloy. Based on these results, the optimal healing temperature was selected and the contribution of Hot Isostatic Pressing (HIP) as healing treatment compared to heat treatments was evidenced.