People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gheysen, Julie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023Phase Transformation-Induced Interfacial Debonding of Silica Inclusions in Ironcitations
- 2023Phase-field simulation of self-healing AlMg alloy
- 2023Development of a new healable aluminium alloy produced by Laser Powder Bed Fusion (LPBF) and improvement of its strength through strengthening element addition
- 2023Suppressing hydrogen blistering in a magnesium-rich healable laser powder bed fusion aluminum alloy analyzed by in-situ high resolution techniquescitations
- 2023Exceptional fatigue life and ductility of new liquid healing hot isostatic pressing especially tailored for additive manufactured aluminum alloyscitations
- 2023Exceptional fatigue life and ductility of new liquid healing hot isostatic pressing especially tailored for additive manufactured aluminum alloyscitations
- 2022Healing Damage in Friction Stir Processed Mg2Si reinforced Al alloy
- 2022Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy
- 2022Self-Healing in Metal-Based Systemscitations
- 2022Characterization of the Healability of Aluminium Alloys Produced by Laser Powder Bed Fusion (L-PBF) Using X-ray Nanoholotomography at Synchrotron (ESRF)
- 2022Design, development and characterisation of new healable aluminium alloys for laser powder bed fusion
- 2022Development of a new liquid assisted healable AlMg alloy produced for Laser Powder Bed Fusion (LPBF)
- 2022Correlative Tomography for micro- and nano- scale defects reduction analysis in Additive Manufactured healable aluminium alloy
- 2022Characterization of a newly developed liquid assisted healable Al alloy produced for Laser Powder Bed Fusion (LPBF)
- 2021Correlative Tomography for micro- and nano- scale porosity reduction analysis in Additive Manufactured healable aluminium alloy
- 2021Efficient optimization methodology for laser powder bed fusion parameters to manufacture dense parts validated on AlSi12 alloy
- 2021Efficient optimization methodology for laser powder bed fusion parameters to manufacture dense and mechanically sound parts validated on AlSi12 alloycitations
- 2021Hot cracking suppression by powder modification of an Al7075 alloy produced by laser powder bed fusion (L-PBF) and first insights in the improvement of its fatigue life
- 2020First insight in the development by L-PBF of healable aluminium alloys
- 2019First insight in the development of a healable aluminum alloy processed by SLM
Places of action
Organizations | Location | People |
---|
document
Development of a new healable aluminium alloy produced by Laser Powder Bed Fusion (LPBF) and improvement of its strength through strengthening element addition
Abstract
Aluminium alloys are used in aerospace and aeronautical fields where damage may occur due to overloads experienced in service. To avoid the replacement of damage parts and the production of new ones, materials able to heal their damage sites present great potential. The goal of this research is to develop a new healable aluminium alloy Al-Mg manufactured by Laser Powder Bed Fusion (LPBF). The microstructure is composed of an Al matrix surrounded by a low melting point eutectic network rich in Mg. After damage nucleation, a healing heat treatment (HHT) with or without additional pressure (Hot Isostatic Pressing) is applied to trigger the melting of the eutectic phase which flows into the voids and seal them during solidification. Alloying elements can be introduced into this alloy to form strengthening precipitates and obtain a high strength alloy during a post-treatment. In this work, the healing potential of the designed alloy, and the influence of pressure during HHT has been characterized in 3D by a correlative X-ray tomography and electron microscopy methodology. X-ray nano- tomography technique at beamline ID16B ESRF allowed to image the damage regions before and after healing (35nm pixel size). In a second time, based on the ESRF data, selected sample sub-volume containing the healed damage has been resected and prepared to be further investigated using PFIB-SEM serial sectioning tomography combined with EDX elemental material composition analysis.