People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hannard, Florent
Université Catholique de Louvain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023Development of a high strength liquid assisted healable modified AlMg alloy produced by additive manufacturing
- 2023On the competition between intergranular and transgranular failure within 7xxx AI alloys with tailored microstructurescitations
- 2023On the Competition between Intergranular and Transgranular Failure within 7xxx Al Alloys with Tailored Microstructurescitations
- 2023Development of a new healable aluminium alloy produced by Laser Powder Bed Fusion (LPBF) and improvement of its strength through strengthening element addition
- 2022Healing Damage in Friction Stir Processed Mg2Si reinforced Al alloy
- 2022Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy
- 2022Self-Healing in Metal-Based Systemscitations
- 2022Design, Friction Stir Processing and characterization of a new healable aluminium alloy
- 2022Understanding the ductility versus toughness and bendability decoupling of large elongated and fine grained Al 7475 - T6 alloycitations
- 2022Characterization of the Healability of Aluminium Alloys Produced by Laser Powder Bed Fusion (L-PBF) Using X-ray Nanoholotomography at Synchrotron (ESRF)
- 2022Development of a new liquid assisted healable AlMg alloy produced for Laser Powder Bed Fusion (LPBF)
- 2022Characterization of a newly developed liquid assisted healable Al alloy produced for Laser Powder Bed Fusion (LPBF)
- 2021Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatmentscitations
- 2019Unveiling the impact of the effective particles distribution on strengthening mechanisms: A multiscale characterization of Mg+Y2O3 nanocompositescitations
- 2018Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropycitations
- 2018Residual ferrite in martensitic stainless steels: the effect of mechanical strength contrast on ductilitycitations
- 20183D characterization, modelling and tailoring of microstructure heterogeneity effects on damage and fracture of 6xxx aluminium alloys
- 2017Ductilization of aluminium alloy 6056 by friction stir processingcitations
- 2016Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
document
Development of a new healable aluminium alloy produced by Laser Powder Bed Fusion (LPBF) and improvement of its strength through strengthening element addition
Abstract
Aluminium alloys are used in aerospace and aeronautical fields where damage may occur due to overloads experienced in service. To avoid the replacement of damage parts and the production of new ones, materials able to heal their damage sites present great potential. The goal of this research is to develop a new healable aluminium alloy Al-Mg manufactured by Laser Powder Bed Fusion (LPBF). The microstructure is composed of an Al matrix surrounded by a low melting point eutectic network rich in Mg. After damage nucleation, a healing heat treatment (HHT) with or without additional pressure (Hot Isostatic Pressing) is applied to trigger the melting of the eutectic phase which flows into the voids and seal them during solidification. Alloying elements can be introduced into this alloy to form strengthening precipitates and obtain a high strength alloy during a post-treatment. In this work, the healing potential of the designed alloy, and the influence of pressure during HHT has been characterized in 3D by a correlative X-ray tomography and electron microscopy methodology. X-ray nano- tomography technique at beamline ID16B ESRF allowed to image the damage regions before and after healing (35nm pixel size). In a second time, based on the ESRF data, selected sample sub-volume containing the healed damage has been resected and prepared to be further investigated using PFIB-SEM serial sectioning tomography combined with EDX elemental material composition analysis.