People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinapius, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2023Processing of 3-(Trimethoxysilyl)propyl Methacrylate (TMSPM) Functionalized Barium Titanate/Photopolymer Composites: Functionalization and Process Parameter Investigationcitations
- 2023The Guided Ultrasonic Wave Oscillation Phase Relation between the Surfaces of Plate-like Structures of Different Material Settingscitations
- 2023Investigations on Guided Ultrasonic Wave Dispersion Behavior in Fiber Metal Laminates Using Finite Element Eigenvalue Analysiscitations
- 2023Characterization of UV Light Curable Piezoelectric 0-0-3 Composites Filled with Lead-Free Ceramics and Conductive Nanoparticlescitations
- 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites
- 2022MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Wavescitations
- 2022A Computational Geometric Parameter Optimization of the Thermomechanical Deicing Conceptcitations
- 2022Influence of a Flat Polyimide Inlay on the Propagation of Guided Ultrasonic Waves in a Narrow GFRP-Specimencitations
- 2022Piezoelectric Ceramic/Photopolymer Composites Curable with UV Light: Viscosity, Curing Depth, and Dielectric Propertiescitations
- 2021Reducing the Weakening Effect in Fibre-Reinforced Polymers Caused by Integrated Film Sensorscitations
- 2021Measurement of Two-Dimensional Electrical Potential Fields in CFRP using Four-Probe Resistance Scanscitations
- 2021Space-Filling Curve Resistor on Ultra-Thin Polyetherimide Foil for Strain Impervious Temperature Sensingcitations
- 2021Characterization 0.1 wt.% Nanomaterial/Photopolymer Composites with Poor Nanomaterial Dispersion: Viscosity, Cure Depth and Dielectric Propertiescitations
- 2020Parameter study and experimental analysis of a thermo-mechanical de-icing conceptcitations
- 2020Adhesion of Multifunctional Substrates for Integrated Cure Monitoring Film Sensors to Carbon Fiber Reinforced Polymerscitations
- 2019Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structurescitations
- 2018Ultrasonic Wave Propagation in Aerospace Structures: Highly Efficient Simulation with a Minimal Model
- 2018Pulse Ultrasonic Cure Monitoring of the Pultrusion Processcitations
- 2016Degradation analysis of fibre-metal laminates under service conditions to predict their durability
- 2016Actuation mechanisms of carbon nanotube-based architectures
- 2016Damage Reconstruction in Complex Composite Structures using Lamb Waves
- 2016Experimental investigations on residual stresses during the fabrication of intrinsic CFRP-steel laminates
- 2016Structural integrated sensor and actuator systems for active flow controlcitations
- 2015ACTUATED TENSILE TESTING OF CNT BASED ARCHITECTURES
- 2015Lamb Wave Propagation in Complex Geometries - A Minimal Model Approach
- 2014Resonant approach for testing glass-fiber-reinforced composites in the VHCF-regime
- 2014MEMS Pressure Sensors Embedded into Fiber Composite Airfoilscitations
- 2014Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
- 2014Carbon Nanotube Strain Measurements via Tensile Testing
- 2014Active Flow Control via Piezo-Actuated Airfoils for High-Lift
- 2013Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: evaluation of stress detectioncitations
- 2013A Dynamical Actuated Lip at a Blowing Slot for Active High-Lift
- 2013Design of mode selective actuators for Lamb wave excitation in composite platescitations
- 2012Experimental investigation of the very high cycle fatigue behaviour of fibre reinforced composites
- 2012Characterization of mode selective actuator and sensor systems for Lamb wave excitation
Places of action
Organizations | Location | People |
---|
document
Ultrasonic Wave Propagation in Aerospace Structures: Highly Efficient Simulation with a Minimal Model
Abstract
Continuous monitoring of the state of a structure could provide a great benefit for many aspects of maintenance, repair and overhaul (MRO) of aircraft and can be an enabler for condition based maintenance. One approach to realize structural health monitoring (SHM) is based on actuator-sensor networks to excite and receive ultrasonic waves. Signal changes indicate damage, but can also be used to identify the location and type of a defect. Simulations of wave propagation could be beneficial to support development and design of SHM systems. However, currently no suitable tools exist due to the size and complexity of aerospace structures in combination with the required high frequencies. An innovative simulation technique is proposed to provide approximate solutions at selected points of the structure with drastically reduced computational cost compared to established numerical methods. In this paper an overview of this minimal model including necessary pre-processing steps is given. This is followed by a validation of the analytical approach with the help of numerical and experimental result. In a first step, wave propagation and interaction inside an aluminum plate is analyzed. Results of the proposed method are compared to calculations with the finite element method (FEM) and measurements with a laser vibrometer. Signals of all three methods agree very well and only a few minor deviations point toward some shortcomings of the minimal model in its current state. But at the same time, the huge performance advantage of the analytical model becomes apparent, as calculation are about three orders of magnitude faster as the FEM. To validate the minimal model on a more complex structure, experimental measurements on a plate consisting of carbon fiber reinforced polymer (CFRP) are used. Good agreement of the results can be observed, but discrepancies are present. This is since modelling of composites is more challenging as they induce different anisotropy effects.