People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geier, Sebastian
German Aerospace Center
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2025Multifunctional characterization of high tensile strength PEO/PVP blend based composites with InAs nanowire fillers for structural sodium ion batteries
- 2024Design and Characterization of Poly(ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries
- 2024Development and Multifunctional Characterization of a Structural Sodium-Ion Battery Using a High-Tensile-Strength Poly(ethylene oxide)-Based Matrix Compositecitations
- 2023Functionally graded ceramics by lithography-based ceramic manufacturing (LCM)
- 2022CHALLENGES OF UPSCALING POWER COMPOSITES FOR AEROSPACE APPLICATIONS
- 2021Robust and Powerful Structural Integrated Thin Film Supercapacitors for Lightweight Space Structures
- 2021Integrated thin film Supercapacitor as multifunctional Sensor Systemcitations
- 2021Additive manufacturing of high-strength alumina through a multi-material approachcitations
- 2019Structure Integrated Supercapacitors for Space Applicationscitations
- 2018Multifunctional Composites for Future Energy Storage in Aerospace Structurescitations
- 2017Carbon Nanotubes Modified Solid Electrolyte-Based Structural Supercapacitors and their Temperature Influence
- 2016Nanostructured all-solid-state supercapacitor based on Li1.4Al0.4Ti1.6(PO4)3 ceramic electrolyte
- 2016Actuation mechanisms of carbon nanotube-based architectures
- 2016Electrical and Mechanical Properties of LiAlTi(PO4)3 Solid Electrolyte Based Power Composites
- 2015ACTUATED TENSILE TESTING OF CNT BASED ARCHITECTURES
- 2014Carbon Nanotube Strain Measurements via Tensile Testing
- 2013Characterization of multifunctional skin-material for morphing leading-edge applicationscitations
Places of action
Organizations | Location | People |
---|
document
Electrical and Mechanical Properties of LiAlTi(PO4)3 Solid Electrolyte Based Power Composites
Abstract
Developing high capacitance electrical energy storage devices with weight/volume-saving properties is a highly desired goal of the energy engineering community. A novel type of composites, the multifunctional power composites, promises to become such materials. These materials have advantages as storing the electrical energy and bearing mechanical loads simultaneously. In the present researches, solid electrolyte is utilized for multifunctional power composites to avoid the leakage problem aroused by liquid electrolytes. The NASION-type ceramic Li1.4Al0.4Ti1.6(PO4)3 executing as solid electrolyte is successfully synthesized by sol-gel method. The as-prepared samples are embedded into fiber composite material using the aviation approved resin RTM6 with the Differential Pressure-Resin Transfer Molding (DP-RTM) process. The electrical properties for samples before and after embedding process are characterized by electrochemical impedance spectroscopy (EIS) as well as cyclic voltammetry (CV). Results show that, Li1.4Al0.4Ti1.6(PO4)3 possesses a conductivity of ~3×10-4 S/cm and a specific capacity of ~55 µF/g at room temperature before embedding. Conductivity and specific capacitances reduce after embedding process to some content. The mechanical properties are characterized by four-point-bending tests. The same composites without Li1.4Al0.4Ti1.6(PO4)3 are used as reference samples comparing with multifunctional power composite samples. Besides, a combination of cyclic voltammetry with four-point-bending tests has been applied as a coupling method to investigate the influence of bending loads on capacitance which indicate a stability of electrical properties of multifunctional power composites under bending loads. The developed Li1.4Al0.4Ti1.6(PO4)3 solid electrolyte-based multifunctional power composites offer a remarkable potential of multifunctional materials for future energy storage devices.