People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sinapius, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2023Processing of 3-(Trimethoxysilyl)propyl Methacrylate (TMSPM) Functionalized Barium Titanate/Photopolymer Composites: Functionalization and Process Parameter Investigationcitations
- 2023The Guided Ultrasonic Wave Oscillation Phase Relation between the Surfaces of Plate-like Structures of Different Material Settingscitations
- 2023Investigations on Guided Ultrasonic Wave Dispersion Behavior in Fiber Metal Laminates Using Finite Element Eigenvalue Analysiscitations
- 2023Characterization of UV Light Curable Piezoelectric 0-0-3 Composites Filled with Lead-Free Ceramics and Conductive Nanoparticlescitations
- 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites
- 2022MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Wavescitations
- 2022A Computational Geometric Parameter Optimization of the Thermomechanical Deicing Conceptcitations
- 2022Influence of a Flat Polyimide Inlay on the Propagation of Guided Ultrasonic Waves in a Narrow GFRP-Specimencitations
- 2022Piezoelectric Ceramic/Photopolymer Composites Curable with UV Light: Viscosity, Curing Depth, and Dielectric Propertiescitations
- 2021Reducing the Weakening Effect in Fibre-Reinforced Polymers Caused by Integrated Film Sensorscitations
- 2021Measurement of Two-Dimensional Electrical Potential Fields in CFRP using Four-Probe Resistance Scanscitations
- 2021Space-Filling Curve Resistor on Ultra-Thin Polyetherimide Foil for Strain Impervious Temperature Sensingcitations
- 2021Characterization 0.1 wt.% Nanomaterial/Photopolymer Composites with Poor Nanomaterial Dispersion: Viscosity, Cure Depth and Dielectric Propertiescitations
- 2020Parameter study and experimental analysis of a thermo-mechanical de-icing conceptcitations
- 2020Adhesion of Multifunctional Substrates for Integrated Cure Monitoring Film Sensors to Carbon Fiber Reinforced Polymerscitations
- 2019Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structurescitations
- 2018Ultrasonic Wave Propagation in Aerospace Structures: Highly Efficient Simulation with a Minimal Model
- 2018Pulse Ultrasonic Cure Monitoring of the Pultrusion Processcitations
- 2016Degradation analysis of fibre-metal laminates under service conditions to predict their durability
- 2016Actuation mechanisms of carbon nanotube-based architectures
- 2016Damage Reconstruction in Complex Composite Structures using Lamb Waves
- 2016Experimental investigations on residual stresses during the fabrication of intrinsic CFRP-steel laminates
- 2016Structural integrated sensor and actuator systems for active flow controlcitations
- 2015ACTUATED TENSILE TESTING OF CNT BASED ARCHITECTURES
- 2015Lamb Wave Propagation in Complex Geometries - A Minimal Model Approach
- 2014Resonant approach for testing glass-fiber-reinforced composites in the VHCF-regime
- 2014MEMS Pressure Sensors Embedded into Fiber Composite Airfoilscitations
- 2014Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
- 2014Carbon Nanotube Strain Measurements via Tensile Testing
- 2014Active Flow Control via Piezo-Actuated Airfoils for High-Lift
- 2013Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: evaluation of stress detectioncitations
- 2013A Dynamical Actuated Lip at a Blowing Slot for Active High-Lift
- 2013Design of mode selective actuators for Lamb wave excitation in composite platescitations
- 2012Experimental investigation of the very high cycle fatigue behaviour of fibre reinforced composites
- 2012Characterization of mode selective actuator and sensor systems for Lamb wave excitation
Places of action
Organizations | Location | People |
---|
document
Damage Reconstruction in Complex Composite Structures using Lamb Waves
Abstract
The current maintenance and inspection strategy for aircraft structures is based on strictly scheduled inspection intervals considering the age and usage of the aircraft. This implies that the structures must be designed in a damage tolerant way, allowingasafeoperationwithundiscovereddamagesuntilthenextmajor inspection.Inaddition,newaircraftaredesignedwithevenlongerinspection intervals to reduce downtime and maintenance costs. For fiber-reinforced composite structures this approach is contradictory to the idea of reducing theweight of the aircraft.Especiallybluntlow-velocityimpactsmaycauselargedamageslike delaminations that are likely to be missed during visual in-service inspection. It is therefore desirable to have an integrated structural health monitoring (SHM) system thatwillmonitorthestructurefordamagesandallowearlydamagedetection between inspection intervals. This does not only pave the way to a more demand-drivenmaintenance,butmaycontributetofurtherexploitingthelight-weight potential of composite materials. In contrast to other monitoring methods the use of Lambwavesallowsdeterminingthelocationofadamage.Thishasbeenshown many times for simple structures like plates or pipelines. However, these methods areoftennotapplicabletocomplexstructuresthatfeaturecurvatures,anisotropic materialpropertiesandchangingmaterialpropertiesthroughoutthestructure. Therefore a damage reconstruction method is proposed, that is similar to methods known from conventional ultrasonic inspection, but takes into account the complex material properties and their influence on the wave propagation. The base for this approach is a time-of-flight calculation that can be applied to structures with many local changes in material properties and allows each material to be anisotropic. This iscombinedwithapulsecompressiontoincreasethetemporalresolutionofthe signalandthereforethespatialresolutionofthereconstruction.Theproposed method can be applied to integrated monitoring systems with a limited number of fixed transducers, high-resolution scans of the wave field obtained with air-coupled ultrasoundsystemsorlaser-vibrometersandcanalsobeadaptedforacoustic emission monitoring.