People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wierach, Peter
Clausthal University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (44/44 displayed)
- 2025Multifunctional characterization of high tensile strength PEO/PVP blend based composites with InAs nanowire fillers for structural sodium ion batteries
- 2024The effect of low temperatures on monitoring structural health using acoustic-ultrasonic piezoelectric transducers on composite structures.
- 2024Innovative welding integration of acousto-ultrasonic composite transducers onto thermoplastic composite structurescitations
- 2024Design and Characterization of Poly(ethylene oxide)-Based Multifunctional Composites with Succinonitrile Fillers for Ambient-Temperature Structural Sodium-Ion Batteries
- 2024Development and Multifunctional Characterization of a Structural Sodium-Ion Battery Using a High-Tensile-Strength Poly(ethylene oxide)-Based Matrix Compositecitations
- 2023Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
- 2023An Efficient Procedure for Bonding Piezoelectric Transducers to Thermoplastic Composite Structures for SHM Application andIts Durability in Aeronautical Environmental Conditionscitations
- 2022Multifunctional Hybrid Fiber Composites for Energy Transfer in Future Electric Vehiclescitations
- 2022CHALLENGES OF UPSCALING POWER COMPOSITES FOR AEROSPACE APPLICATIONS
- 2021Robust and Powerful Structural Integrated Thin Film Supercapacitors for Lightweight Space Structures
- 2021Taurine-Modified Boehmite Nanoparticles for GFRP Wind Turbine Rotor Blade Fatigue Life Enhancementcitations
- 2021Integrated thin film Supercapacitor as multifunctional Sensor Systemcitations
- 2019Powder binders used for the manufacturing of wind turbine rotor blades. Part 2. Investigation of binder effects on the mechanical performance of glass fiber reinforced polymerscitations
- 2019Structure Integrated Supercapacitors for Space Applicationscitations
- 2018Multifunctional Composites for Future Energy Storage in Aerospace Structurescitations
- 2018Ultrasonic Wave Propagation in Aerospace Structures: Highly Efficient Simulation with a Minimal Model
- 2018Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibrescitations
- 2018Powder binders used for the manufacturing of wind turbine rotor blades. Part 1: Characterisation of resin-binder interaction and preform propertiescitations
- 2017Carbon Nanotubes Modified Solid Electrolyte-Based Structural Supercapacitors and their Temperature Influence
- 2016Nanostructured all-solid-state supercapacitor based on Li1.4Al0.4Ti1.6(PO4)3 ceramic electrolyte
- 2016Actuation mechanisms of carbon nanotube-based architectures
- 2016Damage Reconstruction in Complex Composite Structures using Lamb Waves
- 2016Electrical and Mechanical Properties of LiAlTi(PO4)3 Solid Electrolyte Based Power Composites
- 2016Structural integrated sensor and actuator systems for active flow controlcitations
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approachcitations
- 2015Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach
- 2015FIRE PROTECTED CARBON FIBRE REINFORCED PLASTICS FOR STRUCTURAL AIRCRAFT COMPONENTS
- 2015ACTUATED TENSILE TESTING OF CNT BASED ARCHITECTURES
- 2015Lamb Wave Propagation in Complex Geometries - A Minimal Model Approach
- 2014Resonant approach for testing glass-fiber-reinforced composites in the VHCF-regime
- 2014MEMS Pressure Sensors Embedded into Fiber Composite Airfoilscitations
- 2014Durability of Co-bonded Piezoelectric Transducerscitations
- 2014Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
- 2014Carbon Nanotube Strain Measurements via Tensile Testing
- 2014Active Flow Control via Piezo-Actuated Airfoils for High-Lift
- 2013Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: evaluation of stress detectioncitations
- 2013Characterization of multifunctional skin-material for morphing leading-edge applicationscitations
- 2013A Dynamical Actuated Lip at a Blowing Slot for Active High-Lift
- 2013Design of mode selective actuators for Lamb wave excitation in composite platescitations
- 2012Experimental investigation of the very high cycle fatigue behaviour of fibre reinforced composites
- 2012Characterization of mode selective actuator and sensor systems for Lamb wave excitation
- 2000Development of Adaptive Structures with Encapsulated PZT-Patches
- 2000Development of Encapsulated PZT-Patches for Adaptive Structures
Places of action
Organizations | Location | People |
---|
document
Lamb Wave Propagation in Complex Geometries - A Minimal Model Approach
Abstract
Maintenance of aircraft structures is time consuming and thus expensive. Several factors contribute to this, for instance a lack of automation. Furthermore, inspection methods for emerging materials, like carbon fiber reinforces polymers (CFRP), are not yet mature. Uncertainties regarding the long time behavior of damaged and undamaged CFRP lead to high safety margins in structural design. A system for online inspection of large areas could be a solution to this. Different methods for structural health monitoring (SHM) have been explored in the last decades, but active systems with ultrasonic waves are the most promising ones. Interactions in the aircraft structure result in complex wave fields and damage induced signal changes are hard to identify. Simulations could help understand wave propagation, but neither commercial programs nor any known algorithm currently in development can handle these dynamic processes for large areas in acceptable times. All these methods use detailed models to consider all relevant influences.Contrary to this, a minimal model is proposed to simulate Lamb wave propagation in complex geometries. Model reduction is achieved by approximation of repeatedly used structural elements, like stiffeners. The model consists of areas with individual material properties and specific boundary conditions at their border. Interaction behavior at these inhomogeneities is calculated beforehand and summarized with few characteristic values. The most important parameters are transmission, reflection and the conversion of different wave modes. Ray tracing is used to find the fastest paths in the structure between two arbitrary points, i.e. actuator and sensor. The gained information and material specific values are used to calculate the time signal. This approximate method could be used is SHM systems to adapt reference signals to changing environmental conditions, as intelligent reference signal or to optimize actuator sensor networks.