People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohseni, Ehsan
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 20243-Dimensional residual neural architecture search for ultrasonic defect detectioncitations
- 2023Application of eddy currents for inspection of carbon fibre composites
- 2023Application of machine learning techniques for defect detection, localisation, and sizing in ultrasonic testing of carbon fibre reinforced polymers
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Mapping SEARCH capabilities to Spirit AeroSystems NDE and automation demand for composites
- 2023Using neural architecture search to discover a convolutional neural network to detect defects From volumetric ultrasonic testing data of composites
- 2023Phased array inspection of narrow-gap weld LOSWF defects for in-process weld inspection
- 2022Transfer learning for classification of experimental ultrasonic non-destructive testing images from synthetic data
- 2022Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Automated bounding box annotation for NDT ultrasound defect detection
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2022Investigating ultrasound wave propagation through the coupling medium and non-flat surface of wire + arc additive manufactured components inspected by a PAUT roller-probe
- 2022Automated multi-modal in-process non-destructive evaluation of wire + arc additive manufacturing
- 2022Dual-tandem phased array inspection for imaging near-vertical defects in narrow gap welds
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
Places of action
Organizations | Location | People |
---|
document
Application of eddy currents for inspection of carbon fibre composites
Abstract
Carbon Fibre Reinforced Plastics (CFRP) have diverse industrial applications due to their unique mechanical and structural properties. The manufacturing cycle of CFRP can be summarised into three stages: Preforming, moulding and post cure. During the preforming stage of the composites where there is cutting, handling and layup of carbon fibre fabrics, defects such as fibre waviness, missing bundles and in-plane waviness can occur. These defects are usually detected when the component is inspected after the post cure stage. Hence there is a need to inspect these components before the resin is infused into the dry layup. Currently there is no standardised NDE protocols for the inspection of these dry fabrics and preforms in the aerospace manufacturing industry. This study investigates the inspection of Dry Carbon Fabrics (DCF) for fibre orientation, density, and defects such as missing fibre bundles, in and out of plane fibre waviness, before the resin infusion manufacturing stage, using Eddy Current Testing (ECT). <br/>Initial experiments were conducted to test the penetration depth of eddy currents in DCF. A sample was built using biaxial fibre cloth with fibre orientation at 0° and 90°. Six layers were used where layers 2,3,4 and 5 had a strip of aluminium foil to detect the penetration depth of eddy currents through the sample. A total of four stripes were used within the sample.The inspection was carried out at frequencies of 500 and 800 kHz using an eddy current array probe attached to a KUKA robotic arm. Data was gathered in absolute mode for pairs of transmit-receive coils in two transversal and axial topologies. The scans displayed all four stripes, indicating that the eddy current had penetrated through all six layers at both test frequencies. To identify the sensitivity to internal defects, a second experiment was conducted. The inspection sample was made by stacking 10 sheets of DCF with a piece of preformed carbon fibre to induce fibre waviness. Initial results show that the waviness can be detected at 500 kHz with a strong accuracy in every repetition of the scans. Orientation of the fibres could not be detected at this frequency.<br/>To conclude, initial experiments were conducted on dry carbon fibre fabrics using eddy current testing to detect fibre waviness and penetration depth of eddy currents. The results show an indication of fibre waviness in a 10-layer sample at 500 KHz in every repetition of the scans. Although the orientation of the fibres could not be detected at this frequency.<br/>