Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mergulhão, Fj

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Cyanobacteria in marine biofilms: Hydrodynamic and surface effectscitations
  • 2021DEVELOPMENT OF MARINE BIOFILMS BY COCCOID CYANOBACTERIAcitations

Places of action

Chart of shared publication
Teixeira Santos, R.
2 / 8 shared
Romeu, Mj
1 / 8 shared
Gomes, Lc
2 / 11 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Teixeira Santos, R.
  • Romeu, Mj
  • Gomes, Lc
OrganizationsLocationPeople

booksection

DEVELOPMENT OF MARINE BIOFILMS BY COCCOID CYANOBACTERIA

  • Teixeira Santos, R.
  • Mergulhão, Fj
  • Gomes, Lc
Abstract

The undesirable attachment of fouling organisms to submerged surfaces occurs spontaneously in marine ecosystems and may have serious economic and environmental implications. Cyanobacteria are one of the most dominant microfoulers, colonizing different surfaces at diverse locations all over the world. Several factors have been indicated as modulators of marine biofilm development, including hydrodynamic conditions and surface properties, which should be considered for a better knowledge of the dynamics of biofilm formation and the development of more efficient and eco-friendly antifouling marine coatings. The negative impact of marine biofouling has been stressing the need to develop novel surfaces aiming to control biofilm formation by microfouling organisms since they are involved in the initial colonization stage. Likewise, more accurate and easier to perform tests are desirable to screen marine coatings, avoiding, at the first stage, extensive laboratory assays and field trials. In this chapter, the importance of marine biofouling and the role of coccoid cyanobacteria in this process are highlighted. Furthermore, the factors governing biofouling are discussed as this knowledge is being used to develop new antifouling strategies and introduce new procedures to evaluate the attachment of microfoulers. © 2021 by Nova Science Publishers, Inc.

Topics
  • impedance spectroscopy
  • surface