People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shahzad, Rana Faisal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Enhancing lithium-ion battery anode performance via heterogeneous nucleation of silver within Ti3C2-MXene frameworkscitations
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2023Molybdenum Incorporated O3‐type Sodium Layered Oxide Cathodes for High‐Performance Sodium‐Ion Batteriescitations
Places of action
Organizations | Location | People |
---|
document
Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
Abstract
Tin (Sn) is a promising candidate for lithium-ion batteries (LIBs) because of its high theoretical capacity, abundance, and low cost. However, Sn suffers from large volumetric expansion during charging and discharging causing cracking and degradation of the electrode material. Thus, development of new Sn based interfaces and architectures is crucial that can accommodate the volume changes and improve cyclic performance. In this study, we present the development of a novel Sn and hard carbon (h-carbon) architectures for LIB anodes, with a focus on improving their long-term stability and high capacity. The composite architectures is achieved through nano Physical Vapor Deposition (nano-PVD) technique by depositing Sn and hard carbon on Copper substrate at the room temperature and a high temperature (470 oC). Our results show that the Sn and h-carbon architectures exhibit significantly improved long-term cycling stability (> 94% coulombic efficiency after 25 cycles) and higher capacities reaching upto 915 mAh g-1 at 2nd cycle after SEI formation. The resultant microstructures especially at 400 oC created a multi-layer interface with Cu-Sn and h-carbon. The newly developed, so called soft (Cu-Sn) and a hard interface (h-Carbon) provides a cushion against volumetric expansion of Sn microstructures. These findings demonstrate the potential of Sn and hard carbon as promising anode materials for advancing the performance of LIBs.