Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shülli, T.

  • Google
  • 1
  • 19
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016X-ray Coherent Scattering on GaP/Si for III-V Monolithic Integration on Siliconcitations

Places of action

Chart of shared publication
Chahine, G.
1 / 3 shared
Eymery, J.
1 / 6 shared
Guillemé, Pierre
1 / 4 shared
Favre-Nicolin, V.
1 / 5 shared
Durand, Olivier
1 / 40 shared
Turban, Pascal
1 / 19 shared
Pedesseau, Laurent
1 / 91 shared
Létoublon, Antoine
1 / 39 shared
Lucci, Ida
1 / 9 shared
Léger, Yoan
1 / 31 shared
Bahri, M.
1 / 3 shared
Charbonnier, Simon
1 / 6 shared
Largeau, L.
1 / 37 shared
Stodolna, Julien
1 / 9 shared
Patriarche, G.
1 / 94 shared
Ponchet, Anne
1 / 18 shared
Wang, Yanping
1 / 8 shared
Cornet, Charles
1 / 61 shared
Vallet, Maxime
1 / 27 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Chahine, G.
  • Eymery, J.
  • Guillemé, Pierre
  • Favre-Nicolin, V.
  • Durand, Olivier
  • Turban, Pascal
  • Pedesseau, Laurent
  • Létoublon, Antoine
  • Lucci, Ida
  • Léger, Yoan
  • Bahri, M.
  • Charbonnier, Simon
  • Largeau, L.
  • Stodolna, Julien
  • Patriarche, G.
  • Ponchet, Anne
  • Wang, Yanping
  • Cornet, Charles
  • Vallet, Maxime
OrganizationsLocationPeople

document

X-ray Coherent Scattering on GaP/Si for III-V Monolithic Integration on Silicon

  • Chahine, G.
  • Eymery, J.
  • Guillemé, Pierre
  • Favre-Nicolin, V.
  • Shülli, T.
  • Durand, Olivier
  • Turban, Pascal
  • Pedesseau, Laurent
  • Létoublon, Antoine
  • Lucci, Ida
  • Léger, Yoan
  • Bahri, M.
  • Charbonnier, Simon
  • Largeau, L.
  • Stodolna, Julien
  • Patriarche, G.
  • Ponchet, Anne
  • Wang, Yanping
  • Cornet, Charles
  • Vallet, Maxime
Abstract

GaP, quasi-lattice matched to Si, allows growth of low defect density III-V/Si pseudosubstrates [1]. However, Antiphase boundaries (APB) likely appear and must be avoided. In this context, X-ray nanodiffraction and Bragg coherent diffraction imaging (BCDI) have been used as non-destructive techniques for local characterization of APB configuration [2]. Different GaP/Si nanolayers were studied at ID01/ESRF with an 8 keV coherent xray beam. Here a 140nm thick GaP presents annihilated APB (less than 3/m emerging APB). Bragg geometry ptychography of the APB has been attempted using (002) GaP weak reflection. This shows a peak splitting, characteristic of a heterogeneous APB density. But a still too high defect density precludes successful phase retrieval imaging. Two-dimensional fast mapping (kmap) [3] over the (004) and the (002) reflections shows for different regions of integrated intensities (ROI) (Fig. 1a) weak (Bragg maximum -0.5° on rocking angle) and strong scattering conditions (Fig. 1b and 1c respectively). As shown fig. 1b), the weak scattered intensity in ROI1, exhibits contrast lines oriented along both [1 1 0] and [-1 1 0] crystallographic directions. This contrast corresponds to regions of high tilt, surrounding misfit dislocations [3]. Strong scattering conditions performed on the (004) (Fig. 1c) and the (002) Bragg reflections present a quite different contrast with large spotty regions. We believe that this anisotropic contrast is due to weak tilt/strain, associated to the APD annihilation process.1. Y. P. Wang et al., Appl. Phys. Lett. 107, 191603 (2015).2. S. Labat et al., ACS Nano 9, 9210 (2015).3. M. H. Zoellner et al., ACS Appl. Mater. Interfaces 7, 9031 (2015).

Topics
  • density
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • anisotropic
  • dislocation
  • Silicon
  • two-dimensional