People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Capellini, Giovanni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxycitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators
- 2023Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applicationscitations
- 2023Isothermal Heteroepitaxy of Ge 1- x Sn x Structures for Electronic and Photonic Applicationscitations
- 2022Terahertz subwavelength sensing with bio-functionalized germanium fano-resonatorscitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2018Advanced GeSn/SiGeSn Group IV Heterostructure Laserscitations
- 2018Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instabilitycitations
- 2018Antiphase boundaries in InGaP/SiGe/Si : structural and optical properties
- 2018Photoluminescence from GeSn nano-heterostructurescitations
- 2017Fully coherent Ge islands growth on Si nano-pillars by selective epitaxycitations
- 2017Strain relaxation in epitaxial GaAs/Si (0 0 1) nanostructurescitations
- 2017Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPEcitations
- 2016Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillarscitations
- 2015Engineered coalescence by annealing 3D Ge microstructures into high-quality suspended layers on Sicitations
- 2015CMOS-compatible optical switching concept based on strain-induced refractive-index tuning
- 2007GeSi Intermixing in Ge Nanostructures on Si(111): An XAFS versus STM Studycitations
Places of action
Organizations | Location | People |
---|
document
Antiphase boundaries in InGaP/SiGe/Si : structural and optical properties
Abstract
Integration of III-V photonics on Si substrate remains a very hot topic in recent years[1,2]. GaP shows a strong advantage of low-lattice mismatch to Si and has been widely studied. However, the GaP material has an indirect bandgap and relatively low carrier mobility, which intrinsically limit its optical performances. Therefore, the pseudomorphic integration of InGaP on a relaxed SiGe/Si pseudo-substrate is expected to overcome these issues. In this work, the optical properties of an InGaP/SiGe/Si sample were studied by temperature-and power-dependent photoluminescence (PL). With the additional help of transmission electron microscopy images and chemical mechanical polishing technique, one PL emission peak is found to come from surface InP quantum dots. Other PL emission peak with a superlinear power dependence is tentatively considered to be co-contributed by InGaP host material[3] and In-rich antiphase boundaries, in good correlation with theoretical predictions[4].