Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Billy, Emmanuel

  • Google
  • 13
  • 42
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Propylene glycol-based deep eutectic solvent as an alternative to Ethaline for electrometallurgy2citations
  • 2024Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solvent3citations
  • 2024Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solvent3citations
  • 2023Propeline: a green alternative to Ethaline for electrochemical recovery of precious metalscitations
  • 2023Propeline : a new candidate for precious metal recovery 3rd International Meeting on Deep Eutectic Systems, Lisbonne, 19-22 juin 2023citations
  • 2022Coupling electrochemical leaching and electrodeposition in ionic solvents for critical and precious metals recoverycitations
  • 2022Platinum recovery through electrochemical processcitations
  • 2021Mass transport in Ionic Solvents during electrodeposition of gold and palladiumcitations
  • 2021Electrochemical recovery of precious metals in Ionic Liquid mixtures or Deep Eutectic Solventscitations
  • 2018Recovery of Metals from Secondary Raw Materials by Coupled Electroleaching and Electrodeposition in Aqueous or Ionic Liquid Media20citations
  • 2018Fundamental and Applied Aspects to Recycle NMC Cathode Material in Acidic Solutioncitations
  • 2017Electrochemical recovery of platinum from spent proton exchange membrane fuel cells using ionic liquid meltscitations
  • 2010Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell49citations

Places of action

Chart of shared publication
Mendil-Jakani, Hakima
1 / 4 shared
Bertoloni, Calogera
4 / 6 shared
Villemejeanne, Benoît
2 / 2 shared
Mba Ekomo, Vitalys
1 / 1 shared
Lemoine, Charly
3 / 3 shared
Duwald, Romain
1 / 2 shared
Legeai, Sophie
8 / 20 shared
Benayad, Anass
2 / 12 shared
Jahrsengene, Gøril
2 / 4 shared
Karaman, Thomas
2 / 2 shared
Martinez Cuellar, Ana Maria
1 / 2 shared
Petit, Yann
2 / 2 shared
Martinez, Ana Maria
1 / 2 shared
Lapicque, François
4 / 25 shared
Mendiljakani, Hakima
4 / 4 shared
Michel, S.
2 / 12 shared
Menut, Denis
2 / 6 shared
Ekomo, Vitalys Mba
2 / 3 shared
Meux, Eric
7 / 13 shared
Dumas, Thomas
2 / 6 shared
Michel, Stéphanie
1 / 3 shared
Chevallier, Marion
1 / 1 shared
Chapuis, Marlene
1 / 1 shared
Dourdain, Sandrine
2 / 10 shared
Villemejeanne, Benoit
2 / 2 shared
Hazotte, Claire
1 / 4 shared
Balva, Maxime
2 / 3 shared
Comel, Julien
1 / 1 shared
Leclerc, Nathalie
2 / 10 shared
Joulie, Marion
1 / 1 shared
Meyer, Daniel
1 / 1 shared
Laucournet, Richard
1 / 4 shared
Boulineau, Adrien
1 / 10 shared
Vito, Eric De
1 / 2 shared
Guetaz, L.
1 / 2 shared
Thurier, C.
1 / 1 shared
Mailley, S.
1 / 1 shared
Morin, A.
1 / 1 shared
Emieux, F.
1 / 1 shared
Doppelt, P.
1 / 2 shared
Maillard, F.
1 / 3 shared
Donet, S.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2018
2017
2010

Co-Authors (by relevance)

  • Mendil-Jakani, Hakima
  • Bertoloni, Calogera
  • Villemejeanne, Benoît
  • Mba Ekomo, Vitalys
  • Lemoine, Charly
  • Duwald, Romain
  • Legeai, Sophie
  • Benayad, Anass
  • Jahrsengene, Gøril
  • Karaman, Thomas
  • Martinez Cuellar, Ana Maria
  • Petit, Yann
  • Martinez, Ana Maria
  • Lapicque, François
  • Mendiljakani, Hakima
  • Michel, S.
  • Menut, Denis
  • Ekomo, Vitalys Mba
  • Meux, Eric
  • Dumas, Thomas
  • Michel, Stéphanie
  • Chevallier, Marion
  • Chapuis, Marlene
  • Dourdain, Sandrine
  • Villemejeanne, Benoit
  • Hazotte, Claire
  • Balva, Maxime
  • Comel, Julien
  • Leclerc, Nathalie
  • Joulie, Marion
  • Meyer, Daniel
  • Laucournet, Richard
  • Boulineau, Adrien
  • Vito, Eric De
  • Guetaz, L.
  • Thurier, C.
  • Mailley, S.
  • Morin, A.
  • Emieux, F.
  • Doppelt, P.
  • Maillard, F.
  • Donet, S.
OrganizationsLocationPeople

conferencepaper

Mass transport in Ionic Solvents during electrodeposition of gold and palladium

  • Dourdain, Sandrine
  • Mendiljakani, Hakima
  • Villemejeanne, Benoit
  • Meux, Eric
  • Billy, Emmanuel
  • Legeai, Sophie
Abstract

Numeric transition stands on the utilization of sophisticated devices like smartphones, computers or server, which contain an important concentration of critical, rare, or precious metals. So on, metal production from primary ores or from end-of-life devices will necessary increase in the next decades. Currently, precious metals production imply many pyrometallurgical and hydrometallurgical steps and a refining process to obtain pure metals. This refining step is similar using e-waste or primary ores for production, and presents hazardous drawbacks including harmful reagent utilization (cyanide or strong acids) and important wastewater generation.The association of ionic solvents (Ionic Liquids (IL) or Deep Eutectic Solvents (DES)) to electrochemistry could represent a greener solution to this application. These solvents have a low vapor pressure and are non-flammable which considerably reduce fire hazards or worker’s inhalation. Furthermore, they have a great stability (thermal and electrochemical) and act like efficient complexing agents, two very useful properties for precious metals electroleaching without any solvent degradation. These properties have been already used to recover different metals in IL and DES at lab1 or pilot scale2. Recently, CEA Liten and Jean Lamour Institute obtained promising results using a single step electroleaching-electrodeposition (El-Ed) process using ionic liquids for Pt recovery from a membrane electrode assembly (MEA)3. In present work, we evaluate ionic solvent relevance for developing an El-Ed process for gold and palladium electrochemical recovery. We present leaching and deposition performances in IL-mixture and DES for gold and palladium, and electrochemical characteristics which are required for this process. For some ionic liquids, we obtained a gold electroleaching rate comparable to conventional cyanide solution meanwhile DES exhibit faster leaching kinetics. For these promising electrolytes, we focused on the electrodeposition steps (limiting step), and studied metals and ionic species mass transport using Walden plot, PFG-NMR and electroanalytical techniques. Finally, we discussed about relevant experimental parameters (additives, temperature, concentration) to improve mass transport in these solvents.References: 1 G. R. T. Jenkin, A. Z. M. Al-Bassam, R. C. Harris, A. P. Abbott, D. J. Smith, D. A. Holwell, R. J. Chapman and C. J. Stanley, Minerals Engineering, 2016, 87, 18–24. 2 A. P. Abbott, G. Frisch and K. S. Ryder, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2008, 104, 21. 3 M. Balva, S. Legeai, N. Leclerc, E. Billy and E. Meux, ChemSusChem, 2017, 10, 2922–2935.

Topics
  • impedance spectroscopy
  • mineral
  • gold
  • leaching
  • Nuclear Magnetic Resonance spectroscopy
  • electrodeposition
  • palladium