People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moigne, Nicolas Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Sorption of water and ethanol pure vapours and vapour mixtures by four hardwoodscitations
- 2023Flax Shives As Fillers For Injection Molded Bio-Based Composites
- 2023Effect Of Processing On Particle Dispersion And Rheological Behaviour Of Cnc Reinforced Polyvinyl Alcohol Nanocomposites
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2023Tracking the changes into mechanical properties and ultrastructure of flax cell walls during a dynamic heating treatment
- 2023Advances in the Production of Cellulose Nanomaterials and Their Use in Engineering (Bio)Plasticscitations
- 2023In-Situ Monitoring Of The Ultrastructure And Mechanical Properties Of Flax Cell Walls During Controlled Heat Treatment
- 2022Agrobranche Project: Towards sustainable wood fillers from agroforestry for WPC
- 2022Revealing the potential of Guianese waste fibers from timber production and clearings for the development of local and bio-based insulation fiberboards.
- 2022Développement et fonctionnalisation d’anas de lin pour l’élaboration de biocomposites thermoplastiques injectables
- 2021Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystalscitations
- 2021Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysiscitations
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021Swelling and Softening Behaviour of Natural Fibre Bundles under Hygro- and Hydrothermal Conditions
- 2021Towards Sustainable Wood Fillers from Agroforestry for Wood-Plastic Composites : Effect of Filler Size and Wood Species
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2020Fonctionnalisation d’un tissu de lin industriel par adsorption de polysaccharides: effets sur les propriétés physiques des fibres de lin et des biocomposites lin/epoxy
- 2020Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristicscitations
- 2018Dimensional variations and mechanical behaviour of natural fibres from various plant species in controlled hygro/hydrothermal conditions
- 2018Dry fractionation of olive pomace for the development of food packaging biocompositescitations
- 2017Low velocity impact damage assessment in natural fibre biocomposites
- 2016EXPERIMENTAL CHARACTERISATION OF THE IMPACT RESISTANCE OF FLAX FIBRE REINFORCED COMPOSITE LAMINATES
- 2015Influence of flax cell wall components on the interfacial behavior of flax woven fabric/epoxy biocomposites
- 2015Influence of the flax fibre chemical composition on mechanical properties of epoxy biocomposite
Places of action
Organizations | Location | People |
---|
document
Flax Shives As Fillers For Injection Molded Bio-Based Composites
Abstract
Flax shive is the main by-product for flax fiber production. It represents about 50% of the weight of the dry flax stem. Its low price (around 100 €/t) and its very low bulk density (100 to 140 kg/m3 [1]) attracts its use as? an alternative bio-based filler in bio-composite materials. Recent studies have shown a significant effect of flax shives granulometry on the tensile properties of the composite. Therefore, this study aims to further investigate the influence of the size and shape distributions of flax shives on the mechanical behavior of the composite and interpret the results through microstructural analysis. Different fractions were prepared by grinding and sieving to obtain these particle sizes: less than 200 µm, 200-500 µm, 500-800 µm and 800-1600 µm. Flax shive / polypropylene (PP) composites were prepared using twin-screw extrusion and injection molding with fiber weight fractions of 10%, 20%, 30%, and 40%. Maleic anhydride grafted polypropylene (MAPP) was used as a compatibilizer with an optimized ratio. Figure 1a presents the tensile properties of the resulting composites, revealing that flax shives sieved between 200 and 500 µm provide the optimal tensile properties. Microstructure analysis showed that better fiber dispersion and higher interfacial area (shown in Figure 1b) are obtained for composites reinforced with low fiber granulometry. The aspect ratio of the particles was determined after solvent extraction of flax shives from the composite. X-ray tomography (shown in Figure 1c) provided additional data regarding the orientation and the distribution of the flax shives in the composite. Microstructural data were then used to predict the mechanical behavior of the composites and estimate the Young’s modulus of the flax shive through both Mori-Tanaka analytical model and finite element analysis.