People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jakubczak, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Excellent antimicrobial and photocatalytic performance of C/GO/TiO2/Ag and C/TiO2/Ag hybrid nanocomposite beds against waterborne microorganismscitations
- 2023Waste iron as a robust and ecological catalyst for decomposition industrial dyes under UV irradiationcitations
- 2023Application of Micron-Sized Zero-Valent Iron (ZVI) for Decomposition of Industrial Amaranth Dyes
- 2023Novel photo-Fenton nanocomposite catalyst based on waste iron chips-Ti3C2T MXene for efficient water decontaminationcitations
- 2022Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene Flakes Coupling the Nanoblade Effect with ROS Generationcitations
- 2021Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganismscitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021A Review on Development of Ceramic-Graphene Based Nanohybrid Composite Systems in Biological Applicationscitations
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
Places of action
Organizations | Location | People |
---|
document
MXene-based materials for the application in point-of-use water filters
Abstract
The ultrathin 2D nanomaterials restrict the size of materials in one or more dimensions, which distinguishes them from their bulk counterparts. Resulting unique properties and therefore versatile functionalities are obtained in many areas [1]. MXenes are one of the new and still not fully explored families of 2D nanomaterials which are characterized by a few-atoms-thick layered structure. These are transition metal carbides and/or nitrides. The name MXene relates to their parental MAX phases, with the chemical formula of Mn+1AXn in which M is an early transition metal, A reflects an element from A group of the periodic table, X stands for carbide and/or nitride, while n = 1, 2 or 3. The A element may be removed via further acid etching and therefore Mn+1Xn MXene is created [2].Recently, the antibacterial properties of MXenes have been investigated intensively. In particular, titanium carbide (Ti3C2) was tested in terms of its possible application in water treatment technologies [3]. The efficiency of these systems is however limited, especially in the case of harsh sanitation conditions. An efficient point-of-use water treatment system must not only eliminate microbial contamination at a relatively high flow velocity, but it also should require minimal maintenance and be able to keep a long life cycle. In our work, we have shown that polypropylene fabric modified with Ti3C2 MXene and noble metal nanoparticles is a promising candidate for such applications. With improved flow velocity, an oxidized Ti3C2/Al2O3/Ag/Cu nanocomposite-based filtration material was able to efficiently remove potentially pathogenic bacteria (E. coli and S. aureus) from contaminated water. Such effect was not observed in the case of the pristine MXene. In addition, we observed the self-disinfecting potential of nanocomposite-based material, which was the most important result of our work. After 24 h of storage at room temperature, oxidized Ti3C2/Al2O3/Ag/Cu nanocomposite-based bed was able to eliminate almost 100% of bacteria cells accumulated in its structure. The secondary release of the nanocomposite, which could potentially limit its utilization, was also not observed. Our findings are important in understanding MXenes bioactivity towards bacteria, development of nanocomposite systems, and their application in various water treatment technologies.