Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petrus, Mateusz

  • Google
  • 21
  • 30
  • 436

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (21/21 displayed)

  • 2023Synthesis of Ti3SiC2 Phases and Consolidation of MAX/SiC Composites—Microstructure and Mechanical Properties8citations
  • 2022Modelling and Characterisation of Residual Stress of SiC-Ti3C2Tx MXene Composites Sintered via Spark Plasma Sintering Method2citations
  • 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phase47citations
  • 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filterscitations
  • 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Method14citations
  • 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering16citations
  • 2021MXene-based materials for the application in point-of-use water filterscitations
  • 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatment33citations
  • 2020Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramics23citations
  • 2020Mechanical properties and tribological performance of alumina matrix composites reinforced with graphene-family materials19citations
  • 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene40citations
  • 2019Silicon carbide matrix composites reinforced with two-dimensional titanium carbide – manufacturing and properties35citations
  • 2019The effect of the morphology of carbon used as a sintering aid on the mechanical properties of silicon carbide17citations
  • 2019Comprehensive study on graphene-based reinforcements in Al2O3–ZrO2 and Al2O3–Ti(C,N) systems and their effect on mechanical and tribological properties28citations
  • 2019The effect of microstructure evolution on mechanical properties in novel alumina-montmorillonite composites8citations
  • 2018Tribological performance of alumina matrix composites reinforced with nickel-coated graphene16citations
  • 2018Closed die upsetting of aluminum matrix composites reinforced with molybdenum disulfide nanocrystals and multilayer graphene, implemented using the SPS process-microstructure evolution6citations
  • 2017Mechanical properties of graphene oxide reinforced alumina matrix composites 63citations
  • 2017Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process23citations
  • 2017Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene38citations
  • 2015SILICON NITRIDE – MOLYBDENUM CUTTING TOOLS FOR CAST IRON MACHININGcitations

Places of action

Chart of shared publication
Wozniak, Jaroslaw
6 / 6 shared
Cygan, Tomasz
16 / 22 shared
Moszczyńska, Dorota
4 / 21 shared
Olszyna, Andrzej
17 / 71 shared
Adamczyk-Cieślak, Bogusława
8 / 77 shared
Jastrzębska, Agnieszka
9 / 42 shared
Gertych, Arkadiusz
1 / 1 shared
Sienkiewicz, Maksymilian
1 / 2 shared
Zdrojek, Mariusz
1 / 12 shared
Kostecki, Marek
9 / 30 shared
Marek, Piotr
1 / 4 shared
Rozmysłowska-Wojciechowska, Anita
8 / 13 shared
Ziemkowska, Wanda
6 / 18 shared
Lachowski, Artur
4 / 7 shared
Wojciechowski, Tomasz
6 / 21 shared
Woźniak, Jarosław
15 / 39 shared
Pawlak, Wojciech
1 / 1 shared
Mitrzak, Joanna
3 / 3 shared
Karwowska, Ewa
4 / 17 shared
Jakubczak, Michał
3 / 11 shared
Chlubny, Leszek
1 / 2 shared
Jastrzębska, Anna
1 / 2 shared
Jastrzebska, Agnieszka
1 / 2 shared
Jaworska, Lucyna
4 / 8 shared
Teklińska, Dominika
2 / 2 shared
Cygan, Sławomir
3 / 3 shared
Gloc, Michał
1 / 17 shared
Przybyszewski, Bartłomiej
1 / 2 shared
Broniszewski, Kamil
1 / 11 shared
Czechowski, Kazimierz
1 / 4 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2017
2015

Co-Authors (by relevance)

  • Wozniak, Jaroslaw
  • Cygan, Tomasz
  • Moszczyńska, Dorota
  • Olszyna, Andrzej
  • Adamczyk-Cieślak, Bogusława
  • Jastrzębska, Agnieszka
  • Gertych, Arkadiusz
  • Sienkiewicz, Maksymilian
  • Zdrojek, Mariusz
  • Kostecki, Marek
  • Marek, Piotr
  • Rozmysłowska-Wojciechowska, Anita
  • Ziemkowska, Wanda
  • Lachowski, Artur
  • Wojciechowski, Tomasz
  • Woźniak, Jarosław
  • Pawlak, Wojciech
  • Mitrzak, Joanna
  • Karwowska, Ewa
  • Jakubczak, Michał
  • Chlubny, Leszek
  • Jastrzębska, Anna
  • Jastrzebska, Agnieszka
  • Jaworska, Lucyna
  • Teklińska, Dominika
  • Cygan, Sławomir
  • Gloc, Michał
  • Przybyszewski, Bartłomiej
  • Broniszewski, Kamil
  • Czechowski, Kazimierz
OrganizationsLocationPeople

document

Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters

  • Mitrzak, Joanna
  • Karwowska, Ewa
  • Wozniak, Jaroslaw
  • Jastrzębska, Agnieszka
  • Jakubczak, Michał
  • Rozmysłowska-Wojciechowska, Anita
  • Petrus, Mateusz
Abstract

MXenes were first introduced by Naguib et al. in 2011. These are transitional metal carbides and/or nitrides, which possess layered structure and unique properties. The most common method of obtaining MXenes comprise selective acid etching of parental MAX phases with the general formula of Mn+1AXn. Herein, M stands for a transitional metal, A is an A-group element, X is carbon and/or nitrogen, while n = 1, 2 or 3 [1]. After etching, the obtained Mn+1Xn MXene is further delaminated to individual flakes with a wide range of applications [2].Due to their adsorptive, antibacterial, and hydrophilic properties, MXenes are considered a strong candidate for water treatment applications [3]. In our studies, we have developed Ti3C2/Al2O3/Ag/Cu nanocomposite-based polypropylene fabrics for potential point-of-use (POU) water treatment solid-bed systems. Due to the poor sanitation conditions, POU solutions need to overcome extraordinary issues such as sufficient efficiency at a high flow velocity, low cost, minimal maintenance, and a long life cycle. As we have proven, after oxidation of polypropylene fabrics modified with Ti3C2 MXene and noble metal nanoparticles, it was possible to eliminate microbiological contamination of potentially pathogenic bacteria (E. coli and S. aureus) from filtered water, despite a noticeable increase in flow velocity. Such effect was not observed in the case of filters modified with pristine nanocomposite. What is more, aged nanocomposite-based filtration material shown “self-disinfecting” properties, as it was able to eliminate more than 99% of adsorbed bacteria cells within 24 hours of contact time at room temperature. Lastly, DLS and zeta potential analysis confirmed the stability of filters, as there was no secondary release of nanocomposite into the filtrate. This work sheds more light on the potential application of MXenes for water treatment as well as on their antibacterial properties and the possibility of functionalization.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • phase
  • Nitrogen
  • nitride
  • carbide
  • layered
  • etching
  • functionalization
  • dynamic light scattering